Automotive Tribology -

Automotive Tribology (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XIII, 343 Seiten
Springer Singapore (Verlag)
978-981-15-0434-1 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a comprehensive study of all important aspects of tribology. It covers issues and their remedies adopted by researchers working on automobile systems. The book is broadly divided in to three sections, viz. (i) new materials for automotive applications, (ii) new lubricants for automotive applications, and (iii) impact of surface morphologies for automotive applications. The rationale for this division is to provide a comprehensive and categorical review of the developments in automotive tribology. The book covers tribological aspects of engines, and also discusses influence of new materials, such as natural fibers, metal foam materials, natural fiber reinforced polymer composites, carbon fiber/silicon nitride polymer composites and aluminium matrix composites. The book also looks at grease lubrication, effectiveness and sustainability of solid/liquid additives in lubrication, and usage of biolubricants. In the last section the book focuses on brake pad materials, shot peening method, surface texturing, magnetic rheological fluid for smart automobile brake and clutch systems, and application of tribology in automobile systems. This book will be of interest to students, researchers, and professionals from the automotive industry.



Jitendra Kumar Katiyar is an Assistant Professor in the Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. His research interests include tribology of carbon materials, polymer composites, self-lubricating polymers, lubrication tribology and coatings for advanced technologies. He obtained his BE from  UPTU Lucknow in 2007and his Masters and Ph.D. from the Indian Institute of Technology Kanpur in 2010 and 2017 respectively. He is affiliated with several professional societies including the Tribology Society of India, Malaysian Society of Tribology, and The Indian Society for Technical Education (ISTE). He has published more than two dozen papers in reputed journals and international conferences and also serves as a reviewer in many reputed journals.

Shantanu Bhattacharya is a Professor of Mechanical Engineering and the Head of the Design Program at Indian Institute of Technology Kanpur. Prior to this, he completed his MS in Mechanical Engineering from Texas Tech University, Lubbock, Texas, and a PhD in Bioengineering from the University of Missouri, Columbia, USA. He also completed postdoctoral training at the Birck Nanotechnology Center at the Purdue University, USA. His main research interests are design and development of micro- and nano-sensors and actuation platforms, nanoenergatic materials, micro- and nano-fabrication technologies, and water remediation using visible light photo catalysis, and product design and development. He has received many awards and accolades, including the Institute of Engineers Young Engineer Award, the Institute for Smart Structures and Systems Young Scientist Award, the Best Mechanical Engineering Design Award (National Design Research Forum, IEI), and Fellowship from the High Energetic Materials Institute in Australia, Fellowship of the Institution of Engineers (India).

Vinay K. Patel is an Assistant Professor in the Department of Mechanical Engineering, Govind Ballabh Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand, India. He completed his Ph.D. from Indian Institute of Technology Kanpur in 2015, specializing in nano-energetic materials. His research interests include nano-energetic materials, MEMS, welding and tribology. He has published 25 peer-reviewed journal articles, 7 conference papers, 8 chapters and edited one book on nano-energetic materials.

Vikram Kumar is a Post-Doctoral Fellow in the Department of Mechanical Engineering, IIT Kanpur. He completed his PhD in the area of engine tribology from Department of Mechanical Engineering, IIT Kanpur. He completed his Masters in Heat and Power Engineering from UIT, RGPV Bhopal and Bachelors in Mechanical Engineering from COE, BVU Pune. As an Assistant Professor in UIT RGPV Bhopal, he taught courses on heat and mass transfer, fluid mechanics, thermodynamics and IC engine from 2010 to 2012. He has published 7 peer-reviewed journal papers and 2 book chapters. His doctoral thesis was awarded the Best PhD Thesis Award by the International Society for Energy, Environment and Sustainability, and he has also received the CSIR Senior Research Associateship at IIT Kanpur. Currently, he is working on methanol fueled vehicles development.



This book presents a comprehensive study of all important aspects of tribology. It covers issues and their remedies adopted by researchers working on automobile systems. The book is broadly divided in to three sections, viz. (i) new materials for automotive applications, (ii) new lubricants for automotive applications, and (iii) impact of surface morphologies for automotive applications. The rationale for this division is to provide a comprehensive and categorical review of the developments in automotive tribology. The book covers tribological aspects of engines, and also discusses influence of new materials, such as natural fibers, metal foam materials, natural fiber reinforced polymer composites, carbon fiber/silicon nitride polymer composites and aluminium matrix composites. The book also looks at grease lubrication, effectiveness and sustainability of solid/liquid additives in lubrication, and usage of biolubricants. In the last section the book focuses on brake pad materials, shot peening method, surface texturing, magnetic rheological fluid for smart automobile brake and clutch systems, and application of tribology in automobile systems. This book will be of interest to students, researchers, and professionals from the automotive industry.

Preface 6
Contents 9
About the Editors 11
General 14
1 Introduction of Automotive Tribology 15
1.1 Introduction 15
1.1.1 Friction 16
1.1.2 Wear 16
1.1.3 Lubrication 17
1.1.4 Factors Which Affect the Tribological Performance 18
1.1.5 Application of Tribology 19
References 24
New Materials for Automotive Applications 26
2 Tribological Aspects of Automotive Engines 27
2.1 Introduction 27
2.2 Automotive Engine Tribology 29
2.2.1 Engine 29
2.2.2 Engine Lubrication Regimes and Wear Calculations 29
2.2.3 Piston Ring Assembly 30
2.2.4 Engine Bearing 31
2.2.5 Valve-Train 32
2.2.6 Cam Follower 32
2.3 Transmission and Drive Line Tribology 33
2.3.1 Transmission Line 33
2.3.2 Traction Drive Components 33
2.3.3 Wheel Bearing 34
2.3.4 Drive Chain 34
2.4 Trends in Automotive Engine Tribology 34
2.4.1 New Material Development 34
2.4.2 Development of Nano-tribology 35
2.5 Trends in Automotive Lubricants 35
2.5.1 Engine Lubricants 35
2.5.2 Gear Lubricants 36
2.5.3 Axle Lubricants 36
2.5.4 Solid Lubricants 36
2.6 Summary 37
References 37
3 The Potential of Natural Fibers for Automotive Sector 40
3.1 Introduction 41
3.2 Applications of Natural Fibre-Reinforced Polymer Composites (NFRC) 43
3.3 Advantages of Natural Fibre-Reinforced Polymer Composites 43
3.4 Disadvantages of Natural Fibre-Reinforced Polymer Composites 44
3.5 Classification of Natural Fibres 44
3.6 Mechanical Testing of Natural-Fibre Composites 45
3.6.1 Tensile Strength of Composite 45
3.6.2 Elongation at Break (%) 47
3.6.3 Impact Strength 47
3.6.4 Flexural Strength 48
3.6.5 Stiffness 48
3.6.6 Dynamic Mechanical Analysis 49
3.7 Applications in the Automobile Sector 50
3.7.1 Interior Components 50
3.7.2 Exterior Components 55
3.8 Limitations 55
3.9 Conclusions 55
References 56
4 Future of Metal Foam Materials in Automotive Industry 59
4.1 Introduction 60
4.2 Production Methods of Close Cell Metal Foams 61
4.2.1 Blowing Agent Techniques 62
4.2.2 Powder Metallurgy Technique (Trade Name—Alulight) 62
4.2.3 Melt Route Method (Trade Name—Alporas) 63
4.2.4 Foaming by Gas Injection (Trade Name—Alcan or Cymat) 64
4.3 Properties of Some of the Commercially Available Al Foams 65
4.4 Applications and Commercialization of Close-Cell Metal Foam 66
4.4.1 Light Weight Construction and Energy Absorption Applications 67
4.4.2 Light Weight Construction with Damping Insulation 68
4.4.3 Multi-functional Application 68
4.5 Conclusion 69
References 69
5 Study of Tribo-Performance and Application of Polymer Composite 72
5.1 Introduction 72
5.2 Tribology 73
5.2.1 Tribo-Testing Machines 76
5.3 Tribological Properties of Polymer 76
5.4 Tribological Properties of Fibre Reinforced Polymer Composite Materials 82
5.4.1 Glass Fibre Composite 84
5.4.2 Carbon Fibre Composite 85
5.4.3 Natural Fibre Composite 91
5.5 Tribological Application of Composite Materials 91
5.5.1 Gears 94
5.5.2 Brake Pads 95
5.5.3 Springs 97
5.6 Conclusions 98
5.7 Future Works 101
References 101
6 Mechanical and Erosion Characteristics of Natural Fiber Reinforced Polymer Composite: Effect of Filler Size 107
6.1 Introduction 108
6.2 Types of Natural Fibers 109
6.2.1 Composite Fabrication Techniques 110
6.2.2 Particle Size Distribution of Mill Scale 112
6.2.3 Mechanical Characterization 112
6.3 Erosion Behavior of NFRP Composites 115
6.3.1 Air Jet Erosion Test Rig 115
6.3.2 Effect of Impingement Angle on Erosion Rate with Varying Mill Scale Size in Composites 116
6.3.3 Effect of Impact Velocity on Erosion Rate with Varying Mill Scale Size in Composites 118
6.3.4 Effect of Environment Temperature on Erosion Rate with Varying Mill Scale Size in Composites 119
6.4 Conclusion 119
References 120
7 Erosive Wear Behaviour of Carbon Fiber/Silicon Nitride Polymer Composite for Automotive Application 123
7.1 Introduction 124
7.2 Materials and Methods 125
7.2.1 Composite Fabrication 125
7.2.2 Solid Particle Erosion 128
7.3 Result and Discussion 128
7.4 Conclusion 133
References 133
8 Effects of Reinforcement on Tribological Behaviour of Aluminium Matrix Composites 136
8.1 Introduction 136
8.2 Reinforcement Particle in AMC 137
8.3 Techniques of Manufacturing AMCs 138
8.3.1 Squeeze Casting 139
8.3.2 Compocasting 140
8.3.3 Stir Casting 140
8.4 Tribology of AMCs 141
8.5 Mechanical Properties of AMCs 144
8.6 Applications of AMCs 145
8.7 Conclusion 146
References 146
New Lubricants for Automotive Applications 149
9 Current and Future Trends in Grease Lubrication 150
9.1 Introduction 151
9.1.1 Background 151
9.1.2 Overview of Lubricants 151
9.2 Grease 152
9.3 Grease Composition 153
9.3.1 Base Oil 153
9.3.2 Thickener 156
9.3.3 Additives 157
9.4 General Method for Grease Synthesis 158
9.5 Test Methods 159
9.5.1 Physical Property Testing 159
9.5.2 Tribological Performance Testing 164
9.6 Grease Specification for Automotive Industry 167
9.7 Grease Lubrication Mechanism 167
9.8 Grease Tribology 171
9.9 Compatibility of Greases 180
9.10 Application of Grease 180
9.11 Summary 181
References 182
10 Lubrication Effectiveness and Sustainability of Solid/Liquid Additives in Automotive Tribology 186
10.1 Introduction 186
10.1.1 Preparation Method of Lubricants/Vapor Deposition 187
10.1.2 Physical Properties of Steel and Ball-on-Disk Test Procedure 188
10.1.3 Theory of Sliding Friction and Wear 189
10.1.4 Tribological Investigation 190
10.1.5 Influencing Wear Parameters 193
10.1.6 Conclusions and Future Directions 197
References 198
11 Potential of Bio-lubricants in Automotive Tribology 200
11.1 Introduction 200
11.2 Lubrication and Lubricants 202
11.3 Bio-lubricants 203
11.3.1 Bio-lubricant Properties 204
11.3.2 Biodegradability 207
11.3.3 Merits and Demerits of Bio-lubricant 208
11.3.4 Bio-lubricants in Automotive Tribology 209
11.4 Conclusion 214
References 214
Surface Morphologies for Automotive Applications 218
12 Influence of Surface Texturing on Friction and Wear 219
12.1 Introduction 220
12.2 Texturing on Tribo Surface Using Milling Operation 224
12.3 Investigating the Tribological Properties Using Pin-on-Disc Tribometer 226
12.4 Understanding the Mechanisms Involved During Tribo Tests 231
12.4.1 Lubricant Reservoirs Leading to Friction Reduction 231
12.4.2 Presence of Third Bodies in the Dimples (Dry Condition) 232
12.4.3 Increase in COF with the Increase in Load and Texture Density 232
12.4.4 Understanding the Severity of the Wear on the Counter Surface Against the Textured Surface 233
12.5 Conclusion 235
References 235
13 Magneto Rheological Fluid Based Smart Automobile Brake and Clutch Systems 238
13.1 Introduction 238
13.1.1 Constituents of Magneto Rheological Fluid 239
13.1.2 Operational Mode for Magnetorheological Fluid 243
13.2 Need for Magneto Rheological Fluid 244
13.3 Mathematical Modelling 245
13.3.1 Magnetic Properties of Suspended Particles 245
13.3.2 Viscous Incompressible Flow with Pressure Gradient 246
13.3.3 Magneto Rheological Fluid Models 248
13.4 Magneto Rheological Fluid 255
13.4.1 Synthesis and Characterization 256
13.5 Sedimentation Test 257
13.6 Applications of MR Fluid 258
13.6.1 Magneto-Rheological Brake and Clutch System 259
13.7 Classification of MR Fluid Based Braking System 261
13.7.1 Drum Brake 261
13.7.2 Inverted Drum Brake 262
13.7.3 T-Shaped Rotor Brake 263
13.7.4 Disk Type Brake 264
13.7.5 Multiple Disk Brake 265
13.8 Summary 266
References 266
14 Shot Peening Effects on Abrasive Wear Behavior of Medium Carbon Steel 270
14.1 Introduction 270
14.2 Experimental Details 273
14.2.1 Specimen Preparation for Shot Peening 273
14.2.2 Shot Peening 273
14.2.3 Abrasive Wear Test 275
14.2.4 Micro-hardness Measurements 277
14.3 Results and Discussion 277
14.3.1 Materials and Microstructure 277
14.3.2 Microstructure After Shot Peening 278
14.3.3 Micro Hardness 279
14.3.4 Wear Behaviour 280
14.4 Conclusion 284
References 285
15 Tribological Performance of Surface Textured Automotive Components: A Review 287
15.1 Introduction 288
15.2 Texture Design 289
15.2.1 Texture Geometry 289
15.2.2 Texture Position 295
15.3 Surface Texturing in Automotive Components 297
15.3.1 Cylinder Liner 298
15.3.2 Wet Clutch 298
15.3.3 Piston Ring 299
15.3.4 Engine Bearings 299
15.4 Texture Fabrication Techniques 300
15.5 Concluding Remarks 302
References 302
16 Applications of Tribology on Engine Performance 307
16.1 Introduction 308
16.2 Automotive Tribology and Its Importance 308
16.3 Components of IC Engine Subjected to Friction and Wear 309
16.3.1 Piston Rings 310
16.3.2 Journal Bearings 312
16.3.3 Valve Train 313
16.4 Tribological Improvements of IC Engine 315
16.4.1 Engine Friction Reduction 316
16.4.2 Hybridization and Engine Downsizing 320
16.4.3 New Combustion Concepts 321
16.5 Summary 322
References 323
17 Asbestos Free Braking Pads by Using Organic Fiber Based Reinforced Composites for Automotive Industries 326
17.1 Introduction 327
17.2 Literature Review 328
17.2.1 Organic Fiber as Reinforcing Material for Braking Pads 328
17.2.2 Organic Filler as Reinforcing Material for Braking Pads 329
17.3 Experimental Procedure 330
17.3.1 Seashell 330
17.3.2 Periwinkle Shell 330
17.3.3 Palm Kernel Fiber 330
17.3.4 Banana Peels 330
17.3.5 Sisal Fibers 331
17.4 Preparation and Characterization of the Brake Pad Composites 331
17.4.1 Organic Fibers 332
17.4.2 Organic Fillers 335
17.5 Friction, Wear Behavior, and Mechanisms of Organic Fiber Reinforced Brake Friction Materials 338
17.6 Current Challenges and Future Research Direction in Brake Pad Composites 339
17.7 Conclusion 340
References 340

Erscheint lt. Verlag 8.10.2019
Reihe/Serie Energy, Environment, and Sustainability
Energy, Environment, and Sustainability
Zusatzinfo XIII, 343 p. 130 illus., 74 illus. in color.
Sprache englisch
Themenwelt Technik Bauwesen
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Bio Lubricants • composite materials • Liquid Lubricant • solid lubricant • Surface coating • Surface Enhancement • Surface Texturing
ISBN-10 981-15-0434-2 / 9811504342
ISBN-13 978-981-15-0434-1 / 9789811504341
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99