Engineering of Scintillation Materials and Radiation Technologies (eBook)

Selected Articles of ISMART2018
eBook Download: PDF
2019 | 1st ed. 2019
XIII, 326 Seiten
Springer International Publishing (Verlag)
978-3-030-21970-3 (ISBN)

Lese- und Medienproben

Engineering of Scintillation Materials and Radiation Technologies -
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
       This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials.
 
       The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.


Mikhail Korzhik (Korjik) received his diploma in Physics at the Belarus State University in 1981. He got his PhD in 1991 and Doctoral Diploma in 2005 in Nuclear Physics and Optics. Since the beginning of nineties he was deeply involved in research and development of inorganic scintillation materials. He was instrumental in the development of the YAlO3:Ce technology for low energy gamma-rays detection. An important achievement has been the discovery of  Pr3+ doped scintillation media and GdAlO3:Ce and LuAlO3:Ce scintillation materials. His study promoted the understanding of scintillation mechanism in many crystals. He took part in the discovery and mass production technology development of the lead tungstate PbWO4 scintillation crystal for high energy physics application, which resulted in the use of this crystal in two ambitious experiments at LHC, CMS and ALICE and an important contribution to the discovery of the Higgs boson. He is member of the Scientific Advisory Committee of the SCINT cycle of International Conferences dedicated to scintillation materials development.

Alexander Gektin received his diploma after graduating at the Physical faculty of Kharkov university. His PhD thesis (1981) was devoted to defects study in halide crystals. He got his DrSci degree in 1990 (Riga, Latvia) when he investigated the influence of high irradiation doses to crystals. During the last two decades he took part as a renowned scintillation material scientist to several international projects like BELLE, BaBar, PiBeta, CMS in high energy physics, GLAST and AGILLE in astrophysics. At the same time he has led several developments for medical imaging (large area SPECT scintillator) and security systems (600 mm long position sensitive detectors).The major part of these technology developments was transferred to different industrial production lines. At the same time he is known as an expert in the study of fundamental processes of energy absorption, relaxation and light emission in scintillation materials. He has authored more then 250 publications. He is also an Associated Editor of IEEE Transaction of Nuclear Sciences.

Contents 6
Contributors 9
Fundamental Studies 14
1 Fast Processes in Scintillators 15
1.1 Introduction. Why Do We Need Fast Timing and How Fast Should It Be? 15
1.2 General Description of Stages of Energy Relaxation in Scintillators 16
1.2.1 Interaction of Primary Ionizing Particle with Crystal 16
1.2.2 Thermalization of Electronic Excitations 18
1.2.3 Different Types of Emission Centers and Energy Transfer to Them 19
1.2.4 Spatial Distribution of Excitations After Thermalization 20
1.3 Timing Properties of IBL and CL 22
1.4 Rise Profile of Recombination Luminescence Response 24
1.5 Additional Delays Due to Finite Track Length and Light Propagation to the Photon Detector 26
1.6 Conclusions 27
References 27
2 Transient Phenomena in Scintillation Materials 30
2.1 Introduction 30
2.1.1 A Challenge of Persistently Increasing Importance 30
2.1.2 New Parameters of Importance 31
2.1.3 Inherent Phenomena of Importance for Currently Important Properties 32
2.2 Differential Optical Absorption as a Tool for Studying the Time Response of Fast Scintillators 33
2.3 Results and Discussion 34
2.3.1 Carrier Trapping in GAGG:Ce 34
2.3.2 Carrier Trapping in LYSO:Ce 36
2.4 Conclusions 37
References 38
3 Fluctuations of Track Structure and Energy Resolution of Scintillators 40
3.1 Introduction 40
3.2 Intrinsic and Total Energy Resolution 42
3.3 Stages of Energy Conversion in Scintillators and Inputs to Intrinsic Energy Resolution 43
3.4 Conclusions 49
References 49
4 New Properties and Prospects of Hot Intraband Luminescence for Fast timing 51
4.1 Fast Timing: Applications and Problems 52
4.2 The History of Hot Intraband Luminescence 53
4.3 Modern Research of Hot Intraband Luminescence and Its Future Perspectives 57
4.4 Conclusions 60
References 61
Material Science 64
5 Ceramic Scintillation Materials—Approaches, Challenges and Possibilities 65
5.1 Introduction 65
5.2 Materials and Methods 66
5.3 Ceramic Technology Overview 67
5.3.1 Powder Synthesis 67
5.3.2 Compaction 72
5.3.3 Sintering 74
5.4 Conclusions 77
References 77
6 Scintillation Materials with Disordered Garnet Structure for Novel Scintillation Detectors 83
6.1 Introduction 83
6.2 Samples and Measurements 84
6.3 Results and Discussion 85
6.4 Conclusions 89
References 89
7 Garnet Crystal Growth in Non-precious Metal Crucibles 90
7.1 Introduction 90
7.2 Experimental 92
7.2.1 Crystal Growth 92
7.2.2 Measurement of Optical Properties 92
7.2.3 Measurement of Decay Times 92
7.3 Choice of Optimal Crucible Materials and Crystallizer Construction Material 92
7.4 Features of Interactions Between YAG Raw Material, Crystal, Melt and Protective Atmosphere 94
7.5 Growth of YAG:C Crystals and Their Characterization 95
7.6 Development of YAG Activation Methods by Trivalent Cerium 98
7.7 Conclusions 100
References 100
Technology and Production 103
8 Towards New Production Technologies: 3D Printing of Scintillators 104
8.1 Introduction 104
8.2 A Brief Historical Review 105
8.2.1 1980s the Infancy Stage of Additive Manufacturing 105
8.2.2 1990s Adolescence Stage 106
8.2.3 2000s Adulting Stage 106
8.2.4 2010s and Future Perspectives 107
8.3 Recent Progress in the 3D Printing 107
8.3.1 Classification of 3D Printing Techniques. Basic Steps 107
8.3.2 The Main Features of Different 3D Printing Techniques 108
8.3.3 Stereolithography Is the Most Promising Method 112
8.3.4 General Recommendations and Remarks 113
8.4 Conclusions 115
References 115
9 Enriched 40Ca100MoO4 Single Crystalline Material for Search of Neutrinoless Double Beta Decay 118
9.1 Introduction 118
9.2 40Ca100MoO4 Scintillation Crystal Production 120
9.2.1 Production of Enriched 100Mo and Depleted 48Ca Isotopes and Synthesis of 40Ca100MoO4 Growth Charge 120
9.2.2 Recycling of Waste After 40Ca100MoO4 Purification-Crystallization Chain of the Production 122
9.2.3 Crystal Growth 124
9.3 Radioactivity Measurements of 40Ca100MoO4 Scintillation Elements 127
9.4 Conclusions 128
References 128
10 Plastic Scintillators with the Improved Radiation Hardness Level 130
10.1 Introduction 130
10.2 Improving the Radiation Hardness of Plastic Scintillator 133
10.2.1 Improving the Radiation Hardness of Plastic Scintillator by a Longer-Wave Shifter 133
10.2.2 Fluorination of Activator Molecules 138
10.2.3 Improving Radiation Hardness PS by Increasing the Mobility of Radicals 143
10.3 Conclusions 149
References 150
11 State of the Art of Scintillation Crystal Growth Methods 151
11.1 Introduction 151
11.2 The Growth of Large Volume Crystals 152
11.2.1 Methods of Directional Solidification 152
11.2.2 Methods of Crystal Pulling 156
11.2.3 Skull Method of Crystal Growth 158
11.3 Small Volume Crystals Growth 161
11.3.1 ?-PD Method 161
11.3.2 EFG Technique 162
11.4 Conclusion 163
References 163
Detector Solutions 166
12 Application of Scintillation Detectors in Cosmic Experiments 167
12.1 Introduction 167
12.2 Basic Principles of Scintillating Detectors 169
12.2.1 Organic Scintillators 170
12.2.2 Inorganic Scintillators 170
12.3 Cosmic Ray Detectors 172
12.3.1 Neutron Detectors 173
12.3.2 X-Ray and Gamma Ray Detectors 174
12.3.3 Gamma Ray Telescopes 175
12.3.4 MeV Band of Gamma-Ray Astronomy 178
12.3.5 Polarization Measurements 180
12.3.6 New Type Detectors for GRBs Study On-Board CubeSats 182
12.4 Conclusions 183
References 184
13 Neutron Cross Section Measurements with Diamond Detectors 188
13.1 Introduction 188
13.2 Measurement Setup 189
13.3 Pulse-Shape Analysis 189
13.4 Results 190
References 193
14 Investigation of the Properties of the Heavy Scintillating Fibers for Their Potential Use in Hadron Therapy Monitoring 195
14.1 Introduction 195
14.2 Requirements for the Scintillating Material 198
14.3 Experimental Technique 200
14.4 Properties of the Scintillating Fibers 202
14.4.1 Decay Constants 203
14.4.2 Attenuation Length 204
14.4.3 Light Yield 205
14.4.4 Energy Resolution 206
14.4.5 Timing Resolution 206
14.5 Conclusions 207
References 208
15 Development of a Submillimeter Portable Gamma-Ray Imaging Detector, Based on a GAGG:Ce—Silicon Photomultiplier Array 211
15.1 Introduction 212
15.2 Materials and Methods 213
15.3 Results and Discussion 215
15.4 Conclusion 217
References 218
16 Application Scintillation Comparators for Calibration Low Intense Gamma Radiation Fields by Dose Rate in the Range of 0.03–0.1 µSv/h 220
16.1 Introduction 220
16.2 Gamma Radiation Comparator 222
16.2.1 Developing of the Gamma Radiation Comparator 222
16.2.2 Comparator Metrological Characteristics Examination 222
16.2.3 IEC Recommendations for Near-Background Measurements 225
16.2.4 Application Scintillation Comparators for Calibration Low Intense Gamma Radiation Fields by Dose Rate in the Range of 0.03–0.1 µSv/h 226
16.3 Conclusions 232
References 233
17 Antineutrino Detectors 235
17.1 Introduction 235
17.2 Reactor Antineutrino Energy Spectra 236
17.3 Detecting Reactions: Inverse Beta-Decay 237
17.4 Possible Detector Designs 238
17.4.1 General Requirements 239
17.4.2 Detector Design and Materials 240
17.4.3 Detector Location 241
17.5 Conclusions 242
References 242
Instrumentation 244
18 Development of the X-ray Security Screening Systems at ADANI 245
18.1 Introduction 245
18.2 Security Solutions 246
18.2.1 People Screening 246
18.2.2 Cargo and Vehicle X-Ray Inspection 248
18.2.3 Parcels, Baggage and Small Cargo X-Ray Inspection 251
18.3 Inherent Components 252
18.3.1 Scintillators 252
18.3.2 X-ray Detectors Tests 253
18.4 Conclusions 254
References 255
19 Optimization of Physico-Topological Parameters of Dual Energy X-ray Detectors Applied in Inspection Equipment 256
19.1 Introduction 256
19.2 Model and Research Methodology 257
19.3 Materials 260
19.4 Results 261
19.5 Conclusion 264
References 264
20 Control of Organ and Tissue Doses to Patients During Computed Tomography 265
20.1 Introduction 265
20.2 Materials and Methods 268
20.3 Results 270
20.4 Conclusions 272
References 272
21 Information Tool for Multifarious Scientific and Practical Research 274
21.1 Introduction 274
21.2 History of eLab Development 275
21.3 eLab Features 279
21.4 Process System Approach 280
21.5 Propositions and Conclusions 283
References 284
22 Calibration and Performance of the CMS Electromagnetic Calorimeter During the LHC Run II 286
22.1 Introduction 286
22.2 Reconstruction, Calibration and Performance of ECAL at the LHC Run II 287
22.3 Conclusions 291
References 291
23 Study the Applicability of Neutron Calibration Facility for Spectrometer Calibration as a Source of Gamma Rays with Energies to 10 MeV 292
23.1 Introduction 292
23.2 Experimental 293
23.3 Results and Discussion 294
23.4 Conclusions 296
References 297
24 Thermal Neutron Detector Based on LaOBr:Ce/LiF 298
24.1 Introduction 298
24.2 Experiment 299
24.2.1 Chemicals and Radionuclides 299
24.2.2 Sample Preparation and Synthesis 299
24.2.3 Devices and Equipment 300
24.2.4 Methodology of Measurement 300
24.2.5 Results and Discussion 302
24.3 Conclusions 305
References 306
25 Specifics of 3D-Printed Electronics 308
25.1 Introduction 308
25.2 Concise Review of Polymer 3D Printing 309
25.2.1 Polymer 3D Printing 309
25.2.2 3D Printing Technology 311
25.3 Modeling of Conductive Properties of 3D-Printed Lattices 312
25.3.1 Application of the Theory of Resistive Networks to 3D Printed Structures 312
25.3.2 Calculation of Total Resistance and Current Distribution in the 3D-Printed Conductive Lattice 315
25.4 Conclusions 318
References 319

Erscheint lt. Verlag 13.9.2019
Reihe/Serie Springer Proceedings in Physics
Zusatzinfo XIII, 326 p. 161 illus., 111 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik Maschinenbau
Schlagworte conference proceedings • crystal growth • fast photoluminescence • gamma ray detection • Ionizing radiation detector • Scintillator detectors
ISBN-10 3-030-21970-4 / 3030219704
ISBN-13 978-3-030-21970-3 / 9783030219703
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction

von Philip Hofmann

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99