Agglomeration in Metallurgy (eBook)

eBook Download: PDF
2019 | 1st ed. 2020
XVIII, 454 Seiten
Springer International Publishing (Verlag)
978-3-030-26025-5 (ISBN)

Lese- und Medienproben

Agglomeration in Metallurgy - Aitber Bizhanov, Valentina Chizhikova
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book gives details on the processes of agglomeration and its role in modern metal production processes. It starts with a chapter on sinter production, also discussing the quality of sinter and environmental aspects involved on the process. The following chapters focus on pellet production and briquetting of natural and anthropogenic raw materials. It also highlights the best available technologies for briquetting by stiff extrusion.

Aitber Bizhanov. Was born on October 6 1956 in Buinaksk, Russia. Graduated from the Moscow Physical-Technical Institute in 1979. Aitber spent eleven years as a senior researcher with the Institute for High Temperatures, USSR Academy of Sciences, focusing on solar heat storage technologies. In 1992, he left academia, joining EVRAZ, a large, vertically integrated steel and vanadium enterprise with global assets. Following two years as Commercial Director and Executive Plant Director with ChTPZ-Complex Piping Systems, Aitber joined Kosaya Gora Iron Works in 2005 as Commercial Director, introducing a briquetting technology that used metallurgical wastes. Since then, he's worked on agglomeration and briquetting of the metallurgical wastes as Wastes Management Expert for HARSCO Metals. Today, Aitber is an Independent Representative of the J.C.Steele&Sons, Inc. Company in Russia&CIS, Eastern Europe and Turkey. Has Ph.D. degree in the agglomeration of natural and anthropogenic materials in metallurgy. Author of more than 60 publications and is owner and co-author of 14 Russian Patents in the field. Author and owner of the 'BREX' trademark. With his personal participation, projects of briquetting of natural and anthropogenic raw materials of ferrous metallurgy were successfully implemented in a number of countries. Aitber is a member of Institute for Briquetting and Agglomeration (IBA) since 2011.

Valentina Chizhikova. Was born and lives in Moscow. Graduated with honors from the Moscow State Institute of Steel and Alloys (MISiS) with an engineer-metallurgist qualification. Her Ph.D. thesis marked the beginning of the study of solid-phase sintering processes in relation to pellet firing, her doctoral (Dr.Sci.) thesis was devoted to a wide range of tasks related to sinter and pellet production, namely, improving the quality of agglomerated raw materials, resource saving and environmental safety. She has more than 30 years of teaching experience at MISiS (now the National University of Science and Technology), as a professor. In scientific terms, the activities of V.M. Chizhikova have always been devoted to solving industry-specific tasks. Under her leadership and direct participation, more than 30 major research projects were successfully implemented. She is the author of about 200 publications, including 80 copyright certificates and patents, the author and co-author of 8 books on the theory of metallurgical processes, techniques and technologies for the production of agglomerated raw materials and pig iron smelting, environmental problems of metallurgy. In practical terms, she served for 13 years (until April 2018) at a large metallurgical enterprise (PJSC Novolipetsk Metallurgical Plant) as a chief ecologist.

Preface 7
Introduction 9
References 12
Contents 13
About the Authors 17
1 Sinter Production 19
1.1 General Information About the Sintering Process 19
1.2 Raw Materials of the Sintering Process 25
1.3 Preparation of Charge Components for Sintering (Crushing, Dosing, Mixing, Pelletizing) 31
1.3.1 Dosing of the Components of the Sinter Charge 32
1.3.2 Pelletizing of the Sinter Charge 34
1.4 Mass Exchange Processes in the Sintering Layer 60
1.4.1 Chemical Reactions with Participation of Solid Phases 61
1.4.2 Processes in the Formation of the Liquid Phase During Melting 74
1.4.3 Processes During Solidification (Crystallization) of the Melt 75
1.5 Heat Transfer in the Sintering Layer 76
1.5.1 General Information on the Sintering Heat Exchange 76
1.5.2 Zonal Heat Balances of Sintered Layer 79
1.5.3 Mathematical Model of Heat Exchange During Sintering 83
1.5.4 Three-Dimensional Mathematical Model of the Sintering Process 85
1.5.5 Calculation of the Specific Yield of the Sintering Gas 89
1.5.6 Vertical Sintering Speed 90
1.6 The Gas Dynamics of the Sintering Process 91
1.6.1 The Basic Equation of Dynamics of the Porous Layer 91
1.6.2 Gas-Dynamic Resistance Coefficients 92
1.6.3 Porosity of the Sintering Layer 94
1.6.4 Gas Dynamics of Sintering Technology 95
1.6.5 Sinter Machine Performance 98
1.6.6 Ways to Improve the Performance of Sintering Machines 99
1.6.6.1 Modernization to Increase Sintering Capacities 99
1.6.6.2 Increasing Sinter Yield 101
1.6.6.3 Intensification of the Sintering Process 103
1.7 Quality of the Sinter in Terms of Influence on the Performance of Blast Furnace Smelting 106
1.7.1 Sinter Quality Indicators 106
1.7.2 Influence of Sinter Quality on Gas-Dynamic Parameters of Blast Furnace Smelting 108
1.7.3 Requirements for Sinter Quality 111
1.7.4 Basic Solutions to Improve Quality of Sinter 117
1.7.4.1 Production of Low-Silicon Sinter 118
1.7.4.2 Control of the Porous Structure of the Sinter 122
1.7.4.3 Introduction of Low-Melting Additives 124
1.7.4.4 Return Mode 126
1.7.4.5 Regulation of the Thermal Level of the Sintering Process 128
1.7.5 Technology of Sintering Under Pressure 134
1.8 Energy Efficiency of the Sintering Technology 136
1.9 Environmental Aspects of Sinter Production (Best Available Technologies) 141
1.9.1 Thermodynamic Modeling of Emissions in the Sintering Process 142
1.9.2 Characteristics of Emissions from Sinter Production 144
1.9.3 Influence of Technological Factors on the Emission of Pollutants During Sintering 146
1.9.4 Environmental Requirements as the Main Priority of Production Modernization 151
1.9.5 Waste Gas Recirculation Concept 166
1.9.6 Recommendations on the Best Available Technologies (BAT) in Sintering 177
1.9.7 Sinter Plant Without Chimney 179
References 183
2 Pellet Production 189
2.1 General Information About Pellet Production 189
2.1.1 Technological Scheme of the Production of Pellets 189
2.1.2 Formation of Raw Pellets 192
2.1.3 Strengthening of Raw Pellets 194
2.1.3.1 Pellet Drying 194
2.1.3.2 Roasting of Pellets 196
2.2 Charge Components for the Production of Pellets 197
2.3 Formation of Raw Pellets 202
2.3.1 Interaction Between Wetted Particles During the Formation of a Raw Pellet 202
2.3.2 The Nature of the Action of Binding Additives in the Strengthening of Raw Pellets 205
2.3.3 The Effectiveness of Various Strengthening Additives in Pelletizing 207
2.4 Cold-Bonded Pellet Production 218
2.4.1 General Information About Cold Agglomeration 218
2.4.2 Strengthening Mechanism of Portland Cement Binders 219
2.4.3 Cold Strengthening Under Normal Conditions 221
2.4.4 Cold Agglomeration at Moderate Temperatures 223
2.4.5 Cold Agglomeration with Accelerated Strengthening 224
2.4.6 Advantages of Cold Agglomeration Method 226
2.5 Strengthening Pellets with Thermal Methods 226
2.5.1 Phenomenology of Mass Transfer Processes During Heat Treatment of Pellets 228
2.5.2 Simulation of Mass Transfer Processes During Heat Treatment of Pellets 230
2.5.3 Pellet Roasting as a Complicated Case of Sintering 244
2.5.3.1 The Main Laws of Sintering Kinetics 244
2.5.3.2 Sintering Mechanism of Iron Oxides 246
2.5.3.3 Characteristics of Iron Oxide Structure Defects 249
2.5.3.4 Dependence of the Defectiveness of the Hematite Structure on the Genesis of Oxide 256
2.5.3.5 Defects in the Crystal Structure of Iron Oxides and Sintering Processes 262
2.5.4 The Pellet Macrostructure and Strength 265
2.6 Metallurgical Properties of Iron Ore Pellets 269
2.6.1 Pellet Quality Test Methods 269
2.6.2 Quality Requirements for Pellets 272
2.6.3 Basic Solutions for Improving the Quality of Pellets 276
2.6.3.1 Optimization of the Ratio of Fine and Coarse Fractions of the Concentrate 277
2.6.3.2 Minimization of the Zonal Structure of the Pellet 278
2.6.3.3 Introduction of Modifying Additives 279
2.6.3.4 Oxide Structure Defect Management 281
2.6.3.5 Regulation of Liquid-Phase Sintering 282
2.7 Resource Saving in the Production of Pellets 286
2.7.1 Resource Consumption in the Production of Pellets 286
2.7.2 Energy Efficiency of Conveyor Machines as Units for Pellets Roasting 287
2.7.3 Best Available Technologies (BAT) in the Production of Pellets Aimed at Improving Energy Efficiency 290
2.7.3.1 General BAT Solutions 290
2.7.3.2 Improving Thermal Schemes of Roasting Conveyor Machines 290
2.8 Environmental Aspects of Pellet Production 292
2.8.1 General Characteristics of Emissions to the Environment in the Production of Pellets 292
2.8.2 Sources of Emissions from Technological Operations in the Production of Pellets 294
2.8.3 The Best Available Technology in the Production of Pellets 298
References 300
3 Briquetting 305
3.1 General Information on Briquetting of Natural and Anthropogenic Raw Materials 305
3.2 History of the Industrial Briquetting in Ferrous Metallurgy 309
3.2.1 Beginning of the Twentieth Century—The 20s of the Twentieth Century 315
3.2.2 30–50s of the Twentieth Century 322
3.2.3 60–70s of the Twentieth Century 325
3.2.4 The 80s—The End of the Twentieth Century 332
3.2.5 Twenty-First Century 339
3.3 Basic Materials for Briquetting 346
3.3.1 Mining and Beneficiation of Ores 346
3.3.2 Sinter and Pellet Production 348
3.3.3 Coke Production 348
3.3.4 Blast Furnace Production 349
3.3.5 Steelmaking 349
3.3.6 Rolling Production 350
3.3.7 Ferroalloy Production 351
3.3.8 Direct Iron Production 352
3.4 Basic Industrial Technologies of Briquetting in Ferrous Metallurgy 352
3.4.1 Briquetting Using Roller Presses 352
3.4.2 Vibropressing for Briquetting 360
3.4.2.1 The Physical Essence of Vibropressing and the Structure of the Briquette 360
3.4.2.2 Technology of Vibropressing, Transportation, Heat Treatment, and Storage of Briquettes 365
3.4.3 Stiff Vacuum Extrusion Briquetting Technology 369
3.4.3.1 Preparation of Burden Materials for SVE Briquetting 370
3.4.3.2 Technological Process of Briquetting by Method of Stiff Vacuum Extrusion 372
3.4.3.3 The Movement of the Briquetted Mass in the Extruder 376
3.5 Requirements to Metallurgical Properties of Briquettes 388
3.5.1 Briquetting of Natural and Anthropogenic Materials in Blast Furnace (BF) Production 388
3.5.1.1 Metallurgical Properties of Vibropressed Blast Furnace Briquettes 391
3.5.1.2 Metallurgical Properties and Optimization of Extrusion Briquette (Brex) Compositions for Blast Furnace Production (Experimental Work) 396
3.5.1.3 Metallurgical Properties of Industrial Brex Used as the Main Component of a Blast Furnace Charge 403
3.5.1.4 Blast Furnace Operation with 100% Brex in Charge 411
3.5.1.5 Assessment of Prospects for the Use of Carbon-Containing Briquettes from Iron Ore Concentrate 413
3.5.2 Briquetting of Natural and Anthropogenic Raw Materials for Ferroalloy Production 415
3.5.2.1 Metallurgical Properties of Brex on the Basis of Manganese Ore Concentrate 420
3.5.2.2 Metallurgical Properties of Brex on the Basis of Manganese Ore Concentrate and Baghouse Dusts of Silicomanganese Production 421
3.5.2.3 Full-Scale Testing of Silicomanganese Smelting with Brex in the Charge of Submerged EAF 430
3.5.2.4 Metallurgical Properties of Briquettes on the Basis of Chromium-Containing Materials 437
3.5.3 Briquetting in Direct Reduced Iron (DRI) Production 446
References 459
4 Best Available Technologies for Agglomeration of the Raw Materials for Blast Furnaces 466
4.1 Production of Sinter as a BAT 466
4.2 Production of Pellets as a BAT 468
4.3 Stiff Extrusion Briquetting as a BAT 469
4.4 Comparative Analysis of Technologies for Agglomeration of the Raw Materials for Blast Furnace 470
References 471

Erscheint lt. Verlag 3.9.2019
Reihe/Serie Topics in Mining, Metallurgy and Materials Engineering
Zusatzinfo XVIII, 454 p.
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Schlagworte Agglomeration • Briquetting • direct reduction iron • extrusion briquette • Ferro Alloys • iron making • metallurgical properties • pellets production • Sinter • Steel making
ISBN-10 3-030-26025-9 / 3030260259
ISBN-13 978-3-030-26025-5 / 9783030260255
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99