Bismuth-Containing Alloys and Nanostructures -

Bismuth-Containing Alloys and Nanostructures (eBook)

Pengfei Lu, Shumin Wang (Herausgeber)

eBook Download: PDF
2019 | 1st ed. 2019
XIII, 399 Seiten
Springer Singapore (Verlag)
978-981-13-8078-5 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields. 




Shumin Wang received BSc and MSc degrees in Physics from Fudan University, China, in 1985 and 1988, respectively, and his PhD in Semiconductor Physics from Gothenburg University, Sweden, in 1994. He has since been working at Chalmers University of Technology, Sweden, and was promoted to Associate Professor and Professor in 1999 and 2008, respectively. In 2013, he was appointed as '1000-talent program' Professor at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China. Professor Wang is an expert on epitaxial growth, and physics and device applications of low-dimensional semiconductor heterostructures and nanostructures. He has edited one book entitled Lattice Engineering, Technologies and Applications, written 6 book chapters, published over 450 refereed international journal and conference papers and holds 14 Chinese patents. He served as a committee member for numerous international conferences, including the 14th and 18-20thInternational MBE Conference, and the European MBE Workshop since 2011. He was the Chair for the 7th International Workshop on Bismuth-Containing Compounds in 2016 and Co-chair for the IEEE Summer Topic Meeting in 2017. He is a Senior Member of the IEEE Society.

Pengfei Lu received the BSc and DSc degree in physics from Sichuan University, P.R.China, in 1998 and 2003, respectively. Now he is with Beijing University of Posts and Telecommunications (BUPT) as a professor. He published over 100 refereed international journal and conference papers. Presently he is working on theoretical study of optical materials; 2D materials and typical III-V laser materials.


This book focuses on novel bismuth-containing alloys and nanostructures, covering a wide range of materials from semiconductors, topological insulators, silica optical fibers and to multiferroic materials. It provides a timely overview of bismuth alloys and nanostructures, from material synthesis and physical properties to device applications and also includes the latest research findings. Bismuth is considered to be a sustainable and environmentally friendly element, and has received increasing attention in a variety of innovative research areas in recent years. The book is intended as a reference resource and textbook for graduate students and researchers working in these fields. 

Preface 6
Contents 8
Contributors 10
1 Electronic Properties of Dilute Bismides 15
1.1 Introduction 15
1.2 Tight-Binding (TB) Model 16
1.3 BAC/VBAC Model 16
1.4 k·p Model 17
1.5 First-Principle Methods 18
1.5.1 Bulk for Diluted Bismuth Compounds 18
1.5.2 Surface 19
1.5.3 Nanostructure 20
1.6 Other Methods 21
References 22
2 Molecular Beam Epitaxy Growth and Properties of GaAsBi and AlAsBi 24
2.1 Introduction 25
2.2 MBE Growth of GaAsBi 26
2.2.1 Growth Kinetics and Models of GaAsBi 26
2.2.2 MBE Growth Optimization 33
2.3 Surface and Structural Properties 37
2.3.1 Surfactant Effect 37
2.3.2 Droplets 38
2.3.3 Clusters 38
2.3.4 Interface 39
2.4 Optical Properties 40
2.4.1 Composition Dependence Photoluminescence and Localization Effect 40
2.4.2 Temperature Insensitive Bandgap 41
2.4.3 Influence of Growth Temperature on Optical Property 41
2.5 Electric and Transport Properties 42
2.6 Growth and Characterization of AlAsBi 44
2.6.1 Theoretical Simulations 44
2.6.2 MBE Growth of AlAsBi 45
References 46
3 MOVPE Growth and Device Applications of Ternary and Quaternary Dilute Bismide Alloys on GaAs Substrates 50
3.1 Introduction 51
3.2 Experimental Procedure 52
3.3 Results 53
3.3.1 Bi Incorporation in GaAs and Optimization of the Growth Conditions 53
3.3.2 Optical Properties of GaAs1?xBix 59
3.3.3 GaAs1?xBix Laser Diodes 60
3.3.4 Limitations of Bi Incorporation in MOVPE Growth 62
3.3.5 Growth of GayIn1?yAs1?xBix 65
3.4 Summary 69
References 70
4 Strategic Molecular Beam Epitaxial Growth of GaAs/GaAsBi Heterostructures and Nanostructures 72
4.1 Introduction 72
4.2 Bi Incorporation in GaAs 74
4.3 Importance of Bismides 76
4.4 GaAsBi Devices 76
4.4.1 Light-Emitting Diodes 77
4.4.2 Laser Diodes 78
4.4.3 Quaternary Alloy GaAsNBi 79
4.4.4 Bismuth p-i-n Solar Cells 79
4.5 GaAsBi Growth 80
4.5.1 Bi Surfactant Effect 81
4.5.2 Inhomogeneous Bi Distribution: GaAsBi Cluster Formation, Bi Segregation, and the Role of Surface Droplets 82
4.6 Improvement in the Growth of GaAsBi MQWs: TST Technique 83
4.6.1 GaAsBi/GaAs MQW LED Grown Using TST Technique 88
4.7 GaAsBi Growth on High-Index Substrates 88
4.7.1 GaAsBi/GaAs MQWs Grown on High-Index Substrates by Using the TST Technique 89
4.7.2 Experimental Details 89
4.7.3 Atomic Force Microscopy of GaAsBi/GaAs MQWs Grown on (411)A and (411)B 90
4.7.4 Surface RMS Roughness of GaAsBi/GaAs MQWs Grown on (411)A and (411)B 90
4.8 HRXRD and Bi Concentrations of GaAsBi/GaAs MQWs for (411)a and (411)B GaAs Grown at Different As4 BEPs 91
4.8.1 Bi-Content-Dependent PL of the GaAsBi/GaAs MQWs Grown on (411)A and (411)B 93
4.9 GaAsBi Nanowires 95
4.10 Future Work 99
References 101
5 Phosphorus and Nitrogen Containing Dilute Bismides 110
5.1 Introduction 110
5.2 Phosphorus Containing Dilute Bismides 111
5.2.1 Epitaxial Growth 111
5.2.2 Physical Properties 115
5.2.3 Other Ternary or Quaternary Phosphide Bismide 124
5.3 Nitrogen Containing Dilute Bismides 126
5.3.1 AlN1–xBix 127
5.3.2 InN1–xBix 127
5.3.3 GaN1–xBix 129
5.3.4 BBi1–xNx 130
5.3.5 GaAs1?x–yNxBiy 130
5.3.6 GaSb1?x–yNyBix 132
References 133
6 GaSbBi Alloys and Heterostructures: Fabrication and Properties 137
6.1 Introduction: Motivation and Historical Overview 137
6.1.1 The Antimonides 137
6.1.2 Motivation for the Development of GaSbBi 138
6.1.3 Historical Overview 141
6.2 Molecular Beam Epitaxy of GaSbBi 143
6.2.1 Growth Conditions 143
6.2.2 Setting the Growth Parameters 146
6.3 Microstructure of Ga(Sb,Bi) Investigated by Transmission Electron Microscopy (TEM) 148
6.3.1 Introduction 148
6.3.2 Experimental Details 149
6.3.3 Ga(Sb,Bi) Epilayers 152
6.3.4 Ga(Sb,Bi)/GaSb Quantum Wells 155
6.3.5 Laser 158
6.4 Electronic Band Structure and Optical Properties 160
6.4.1 Photoreflectance of GaSbBi/GaSb QWs 160
6.4.2 Photoluminescence of GaSbBi/GaSb QWs and Carrier Localization 163
6.5 Laser Based on GaSbBi/GaSb Quantum Wells 165
6.5.1 Laser Structure 165
6.5.2 Epitaxial Growth of the Laser Structure 165
6.5.3 Device Characterization 167
6.6 Conclusion 168
References 168
7 Dilute Bismuthides on InP Substrates: From Materials to Devices 174
7.1 Introduction 174
7.2 InGaBiAs 175
7.2.1 Growth Condition and Structural Characterization 175
7.2.2 Band Structure and Optical Properties 180
7.2.3 Electrical Properties 181
7.2.4 Potential Applications 183
7.3 InPBi 184
7.3.1 Growth Conditions and Structural Characterization 184
7.3.2 Band Gap 184
7.3.3 Electrical and Optical Properties 187
7.4 Summary 188
References 188
8 Bismuth-Related Nanostructures 191
8.1 Introduction 191
8.2 III-V-Bi QDs 192
8.2.1 GaAs(Bi) QDs 192
8.2.2 InAs(Bi) QDs 193
8.2.3 GaSb(Bi) QDs 198
8.2.4 InSb(Bi) QDs 200
8.3 GaAsBi NWs 201
8.3.1 Theoretical Calculations 201
8.3.2 Material Growth 202
8.3.3 Bismuth-Induced Phase Control 203
8.4 InBi Clusters 204
8.5 Summary 206
References 206
9 Surface Mediated Growth of Dilute Bismides 210
9.1 Surface Reconstructions in Bi-Containing Films 210
9.2 Kinetics of Growth Under a Bi Surfactant 215
9.3 Growth in the Presence of Droplets 217
9.4 Summary and Conclusions 221
References 222
10 Structural Properties of Bi Containing InP Films Explored by Cross-Sectional Scanning 224
10.1 Background 225
10.2 Cross-Sectional Scanning Tunneling Microscopy on III-V Semiconductors 226
10.2.1 Sample Preparation and Cleavage 226
10.2.2 Properties of the Zinc-Blende (110) Surface 227
10.2.3 X-STM Contrast of Isovalent Impurities in III-V Semiconductors 229
10.3 Spatial Structure of Individual Bi Atoms Near the InP (110) Cleavage Plane 231
10.4 Structural Characteristics of Bi Containing InP Films 233
10.4.1 Spatial Correlations in the Bi Distribution 233
10.4.2 Bi Surface Segregation at the Interfaces of an InPBi/InP Quantum Well 235
10.5 Conclusion 236
References 237
11 Optical Properties of Dilute Bismides 239
11.1 Introduction 239
11.2 Photoluminescence Properties 241
11.2.1 Bi-Content-Dependent PL of GaAsBi and InPBi 241
11.2.2 Excitation Power-Dependent PL of GaAsBi 243
11.2.3 Temperature-Dependent PL of InPBi 247
11.2.4 PL of GaSbBi/AlGaSb Quantum Wells 251
11.3 PR of Dilute Bismides 256
11.3.1 Bi-Content-Dependent PR 257
11.3.2 Temperature-Dependent PR 260
11.3.3 PR of GaSb(Bi)/AlGaSb Quantum Well 261
11.4 Other Optical Properties in Dilute Bismides 265
11.4.1 Raman Scattering of GaAsBi and InPBi 265
11.4.2 Absorption Properties of GaAsBi 265
11.4.3 Refractive Index of GaAsBi 265
11.5 Summary 265
References 266
12 The Physics of Bismide-Based Lasers 270
12.1 Introduction: A Review of Semiconductor Approaches for the Infrared 270
12.2 Development of GaAsBi-Based Lasers and Related Challenges 275
12.3 Laser Characteristics and Physical Properties of Near-IR GaAsBi Lasers 279
12.4 Bismide-Based Materials for Mid-IR Lasers 295
12.4.1 GaAsBi(N) Based Type-I and Type-II Heterostructures 295
12.4.2 InGaAsBi/InP Structures for Mid-Infrared Applications 296
12.4.3 2.7 µm GaSbBi/GaSb Laser Structures for Mid-Infrared Applications 297
12.5 Summary 299
References 300
13 Dilute Bismide Photodetectors 306
13.1 Introduction 306
13.2 GaAsBi Photodetectors 308
13.3 InAsBi Photodetectors 311
13.4 InSbBi Photodetectors 314
13.5 InGaAsBi Photodetectors 314
13.6 Dilute Bismide THz Detectors 320
13.7 Summaries 322
References 323
14 Epitaxial Growth of Bi2X3 Topological Insulators 326
14.1 Introduction 326
14.1.1 The Birth of Topological Insulators 326
14.1.2 Bi2X3-Based 3D Topological Insulators 328
14.2 MBE Growth of High-Quality Bi2X3 Thin Films 329
14.2.1 Substrate Selection 329
14.2.2 Initial Surface Passivation 333
14.2.3 Substrate Temperature 336
14.2.4 Atomic Flux Ratio 337
14.2.5 In Situ Surface Capping 338
14.2.6 Doping in Bi2X3 Thin Films 339
14.3 MBE Growth of Bi2X3-Based Heterostructures 344
14.3.1 Modulation-Doped Bi2X3-Based Magnetic Heterostructures 345
14.3.2 Bi2X3-Ferro-/Antiferromagnetic Heterostructures 347
14.3.3 Bi2X3-Based Topological Superconductor Heterostructures 349
14.4 Conclusion 351
References 352
15 Quantum Spin Hall States in 2D Bismuth-Based Materials 357
15.1 Introduction 358
15.2 The Quantum Hall (QH) Effect and the Quantum Anomalous Hall (QAH) Effect 359
15.2.1 Berry Phase, Chern Number 362
15.2.2 The QSH Effect and Z2 Topological Invariant 366
15.3 Topological Aspects of Graphene 367
15.3.1 Honeycomb Lattice and the Low-Energy Effective Model 367
15.3.2 Principles for Realizing Large-Gap QSH Insulators 370
15.4 Bi-Based 2D Honeycomb Materials 371
15.4.1 Group V-Bi Binary Compounds 373
15.4.2 Group III-Bi Monolayer as Large-Gap Topological Insulators 375
15.4.3 2D Systems Based on Group IV-Bi-VI Elements and BiSb 377
15.4.4 Functionalization of 2D Bismuth-Based Compounds 378
15.5 Summary and Outlook 382
References 383
16 Dilute Bismuth Optical Fibers 386
16.1 Introduction 386
16.1.1 Background 386
16.1.2 Experimental Studies 387
16.1.3 Luminescence Mechanism 388
16.2 Active Bismuth Centers in Bi-Doped Silica Fibers 389
16.2.1 High-Valence Bismuth Centers 389
16.2.2 Subvalent Bismuth Centers 390
16.2.3 Interstitial Bismuth Centers 394
16.3 Interaction of Bismuth with Intrinsic Defects 397
16.3.1 Interaction of Bi0 with ODC(I) 397
16.4 Summary 399
References 399
Index 401

Erscheint lt. Verlag 3.7.2019
Reihe/Serie Springer Series in Materials Science
Zusatzinfo XIII, 399 p. 194 illus., 164 illus. in color.
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte 2D material • Bi2Se3 • Bi2Te3 • Bismide nanostructures • Bismuth alloy • Bismuth-containing optical fiber • Dilute bismide • Epitaxial Growth • III-V-Bi alloys • Superconductor material • Surfactant effect • Thermoelectric Material • Topological Insulator
ISBN-10 981-13-8078-3 / 9811380783
ISBN-13 978-981-13-8078-5 / 9789811380785
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99