Surface Plasmon Resonance Sensors (eBook)

A Materials Guide to Design, Characterization, Optimization, and Usage
eBook Download: PDF
2019 | 2nd ed. 2019
XIV, 326 Seiten
Springer International Publishing (Verlag)
978-3-030-17486-6 (ISBN)

Lese- und Medienproben

Surface Plasmon Resonance Sensors - Leiva Casemiro Oliveira, Antonio Marcus Nogueira Lima, Carsten Thirstrup, Helmut Franz Neff
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's. 

Finally, this treatise includes as-yet hardly explored SPR features of selected metal-metal and metal-dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.




Leiva Casemiro Oliveira is a computer scientist, who received a Ph.D. in electrical engineering at UFCG-Brazil in 2016. He is an advanced researcher on SPR technology in Brazil.

Antonio Marcus N. Lima is an electrical engineer, who received his doctoral degree from INPT-Toulouse in 1989. He is a renowned researcher in the field of electrical engineering in Brazil.

Carsten Thistrup received his Ph.D. in 1991 at the Technical University of Denmark; he co-founded the company Vir Biosensor.
 
Helmut Neff was a physicist, who received his Ph.D. degree from TU-Berlin in 1981. He held positions at several researcher centers around the world.

Preface 7
Acknowledgements 9
Contents 10
1 Introduction and Background Information 14
References 21
2 Physical Features of the Surface Plasmon Polariton 23
2.1 Physical Features of Surface Plasmon Resonance Sensors 26
2.2 Radiative Surface Plasmon Resonance 28
2.2.1 Radiative SP-Decay: Emission into the Lower Half-Space 30
2.2.2 Radiative SP-Decay: Emission into the Upper Half-Space 31
References 32
3 Design Features of Surface Plasmon Resonance Sensors 34
3.1 Propagating Surface Plasmons 34
3.2 Localized SP's 39
References 41
4 Modeling and Data Processing 42
4.1 Multilayer Fresnel Analysis 42
4.2 Long Range Surface Plasmon Polaritons 44
4.3 Localized Surface Plasmon Resonance in Small Particles 45
4.4 Finite Element Method (FEM) 46
4.5 Data Processing 47
References 58
5 Sensor Properties of Metal Films and Particles: Free Electron Type Metals 60
5.1 Thin Aluminum Films and Colloidal Particles 60
5.1.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode) 63
5.1.2 Surface Plasmon Resonance at Al-Air Interface 65
5.1.3 Localized Plasmons in Colloidal Al-Particles (LSPR-Mode) 67
5.1.4 Experimental Results for Aluminum/Water Interface 68
5.2 Thin Lithium (Li) Films 72
5.3 Thin Magnesium (Mg) Films 79
References 84
6 Classical Noble Metals 85
6.1 Thin Copper (Cu) Films and Colloidal Particles 85
6.1.1 Long Range Surface Plasmon Polariton (LRSPP-Mode) 89
6.1.2 Surface Plasmon Resonance at Cu-Air Interface 89
6.1.3 Localized Plasmons in Colloidal Cu-Particles (LSPR-Mode) 92
6.1.4 Experimental Results for Copper/Water Interface 94
6.2 Thin Gold (Au) Films and Colloidal Particles 95
6.2.1 Long Range Surface Plasmon Polariton (LRSPP-Mode) 99
6.2.2 Au-SPR Response for Nonlinear Materials at Water Interface 101
6.2.3 Surface Plasmon Resonance at Au-Graphene-Water Interface 102
6.2.4 Surface Plasmon Resonance at Au-Air Interface 103
6.2.5 Localized Plasmons in Colloidal Au-Particles (LSPR-Mode) 104
6.2.6 Experimental Results for Gold/Water Interface 105
6.3 Thin Silver (Ag) Films and Colloidal Particles 109
6.3.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode) 113
6.3.2 Surface Plasmon Resonance at Ag-Air Interface 113
6.3.3 Localized Plasmons in Colloidal Ag-Particles (LSPR-Mode) 116
6.3.4 Experimental Results for Silver/Water Interface 117
References 120
7 Noble Transition Metals of the Platinum Group 121
7.1 Thin Iridium (Ir) Films and Colloidal Particles 121
7.1.1 Surface Plasmon Resonance at Ir-Air Interface 125
7.1.2 Localized Plasmon in Colloidal Ir-Particles (LSPR-Mode) 127
7.2 Thin Osmium (Os) Films and Colloidal Particles 127
7.2.1 Long Range Surface Plasmon Polaritons (LRSPP-Mode) 133
7.2.2 Surface Plasmon Resonance at Os-Air Interface 134
7.2.3 Properties of Localized Plasmons in Os-Colloidal Particles 136
7.3 Thin Palladium (Pd) Films 137
7.4 Thin Platinum (Pt) Films 143
7.4.1 Surface Plasmon Resonance at Pt-Air Interface 146
7.4.2 Properties of Localized Plasmons in Pt-Colloidal Particles 149
7.5 Thin Rhodium (Rh) Films 151
7.6 Thin Ruthenium (Ru) Films 154
References 163
8 Common Transition Metals 164
8.1 Thin Chromium (Cr) Films 164
8.2 Thin Cobalt (Co) Films 168
8.3 Thin Iron (Fe) Films 174
8.3.1 Surface Plasmon Resonance at Fe-Air Interface 178
8.3.2 Properties of Localized Plasmons in Colloidal Fe-Particles 178
8.3.3 Magneto-Optical Effect 179
8.4 Thin Molybdenum (Mo) Films 181
8.5 Thin Nickel (Ni) Films 188
8.6 Thin Niobium (Nb) Films 193
8.7 Thin Tantalum (Ta) Films 198
8.8 Thin Titanium (Ti) Films 205
8.9 Thin Tungsten (W) Films 211
8.10 Thin Vanadium (V) Films 217
8.11 Thin Zirconium (Zr) Films 224
References 229
9 Other Common Metals 231
9.1 Thin Indium (In) Films 231
9.1.1 Surface Plasmon Resonance at In-Air Interface 236
9.2 Thin Tin (Sn) Films 236
9.2.1 Surface Plasmon Resonance at Sn-Air Interface 240
9.3 Thin Zinc (Zn) Films 242
9.3.1 Surface Plasmon Resonance at Zn-Air Interface 246
9.4 Thin Lead (Pb) Films 249
9.4.1 Long Range Surface Plasmon Polariton (LRSPP-Mode) 253
9.4.2 Surface Plasmon Resonance at Pb-Air Interface 254
9.4.3 Localized Plasmons in Colloidal Pb-Particles (LSPR-Mode) 256
9.5 Thin Bismuth (Bi) Films 257
9.5.1 Surface Plasmon Resonance at Bi-Air Interface 262
References 264
10 Active Metal-Type Compounds 265
10.1 Thin Indium-Tin-Oxide (ITO) Films 265
10.1.1 Surface Plasmon Resonance at ITO-Air Interface 269
10.2 Thin Titanium-Nitride (TiN) Films 272
10.2.1 Surface Plasmon Resonance at TiN-Air Interface 276
References 280
11 Heavy Metals 281
11.1 Thin Cesium (Cs) Films 281
11.2 Thin Uranium (U) Films 287
References 291
12 Artificial Metal-Insulator Multi-layer Structures 292
12.1 Silver-Al2O3-Silver Multilayer Structures 292
13 Practical Applications 296
13.1 Construction an SPR System: PPBIO Case Study 296
13.1.1 Calibration of the SPR Sensor 303
13.2 Dengue Detection 304
13.3 Leishmaniose Detection 307
13.4 Biofuel Tampering Detection 309
13.4.1 Tampering Detection with PPBIO SPR Sensor 310
13.4.2 Tampering Detection with PPBIO dc-Sheet Resistance Sensor 311
13.5 Optical-Fiber Based Sensors 312
13.6 Grating-Coupled Sensors 316
References 320
14 Conclusions 322
Reference 326
Glossary 327
Index 329

Erscheint lt. Verlag 13.6.2019
Reihe/Serie Springer Series in Surface Sciences
Zusatzinfo XIV, 326 p. 406 illus., 233 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Maschinenbau
Schlagworte Embedded Metal Layers • Materials for Plasmon Resonance Sensors • Multilayer Fresnel Analysis • Optical sensors • Plasmon Resonance Sensor Design • Plasmon Resonance Sensor Optimization • SPR Characteristics • SPR Sensors • Surface Plasmon Polariton Sensor • Surface Plasmon Resonance Sensor
ISBN-10 3-030-17486-7 / 3030174867
ISBN-13 978-3-030-17486-6 / 9783030174866
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 34,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Für Ingenieure

von Rainer Müller; Franziska Greinert

eBook Download (2023)
De Gruyter (Verlag)
49,95
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
48,99