Mechanical Fatigue of Metals (eBook)

Experimental and Simulation Perspectives
eBook Download: PDF
2019 | 1st ed. 2019
XII, 413 Seiten
Springer International Publishing (Verlag)
978-3-030-13980-3 (ISBN)

Lese- und Medienproben

Mechanical Fatigue of Metals -
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches.

Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.

Preface 6
Conference Proceedings of the ICMFM XIX. Mechanical Fatigue of Metals—Experimental and Simulation Perspectives 6
Contents 8
Microstructural Aspects of Fatigue and Thermal and Environmental Fatigue 14
1 Microscopic Strain Localization of Ti-6Al-4V Alloy Under Uniaxial Tensile Loading 15
1.1 Introduction 15
1.2 Experimental Procedures 16
1.2.1 Material 16
1.2.2 In-situ Tensile Testing with DIC Method 16
1.3 Micromechanical Modelling of Ti-6Al-4V Alloy 18
1.3.1 Microstructure-Based RVE Generation 18
1.3.2 Kinematic Hardening Parameters Identification 18
1.4 Results and Discussion 19
1.5 Conclusions 20
References 21
2 Characterization of the Fatigue and Damage Behavior of Extruded AW6060 Aluminum Chip Profiles 22
2.1 Introduction 22
2.2 Material and Experimental Methodology 23
2.2.1 Material and Characterization of Microstructure 23
2.2.2 Quasi-static Deformation Testing 24
2.2.3 Cyclic Deformation Testing 24
2.3 Results and Discussion 25
2.4 Conclusions and Outlook 27
References 28
3 Micromagnetic-Based Fatigue Life Prediction of Single-Lip Deep Drilled AISI 4140 29
3.1 Introduction 29
3.2 Testing Strategy 30
3.2.1 Single-Lip Deep Hole Drilling 30
3.2.2 Micromagnetic Techniques 30
3.2.3 Material 31
3.2.4 Test Setup 31
3.3 Results 32
3.4 Summary and Outlook 33
References 35
4 Relationship Between Microstructural Features and Fatigue Behavior of Al-Based Alloy in Green Chemical Processing 36
4.1 Introduction 36
4.2 Materials and Methods 37
4.3 Results and Discussion 38
4.4 Conclusions 41
References 42
5 Influence of Heat Treatment Process to the Fatigue Properties of High Strength Steel 43
5.1 Introduction 43
5.2 Analysis of Static Strength Properties 44
5.3 Analysis of Fatigue Properties 44
5.4 Analysis of Microstructure 47
5.5 Conclusions 47
References 48
6 Effect of Heat Treatment on High-Temperature Low-Cycle Fatigue Behavior of Nickel-Based GH4169 Alloy 49
6.1 Introduction 49
6.2 Experimental Procedures 50
6.3 Result and Discussion 52
6.4 Conclusion 55
References 55
7 High Temperature Fatigue Behaviour of Secondary AlSi7Cu3Mg Alloys 56
7.1 Introduction 56
7.2 Experimental Procedure 57
7.2.1 Casting Parameters 57
7.2.2 Heat Treatment and Hardness Measurements 58
7.2.3 Fatigue Testing 58
7.2.4 Microstructural Investigations 58
7.3 Results and Discussion 59
7.3.1 Age-Hardening Response in the AlSi7Cu3Mg Alloy 59
7.3.2 Microstructural Observations 60
7.3.3 Fatigue Characterization 60
7.4 Conclusions 61
References 62
8 Mean Stress Effect on Fatigue Behavior of Austenitic Stainless Steel in Air and LWR Conditions 63
8.1 Introduction 63
8.2 Material and Experimental Procedure 64
8.2.1 Material and Specimens Fabrication 64
8.2.2 Fatigue Test Facilities and Experimental Conditions 65
8.3 Results and Discussion 65
8.3.1 Fatigue Tests 65
8.3.2 Post-test Specimen Characterization 67
8.4 Conclusion 68
References 68
9 Characterization of the Fatigue Behavior of Mechanical and Thermal Aged Austenitic Power Plant Steel AISI 347 70
9.1 Introduction 71
9.2 Material and Material Condition 71
9.3 Experimental Setup and Procedure 72
9.4 Results of Testing and Measurement 73
9.5 Conclusions 75
References 76
Fatigue of Additive Manufacturing Metals 77
10 As-Built Sharp Notch Geometry and Fatigue Performance of DMLS Ti6Al4V 78
10.1 Introduction 78
10.2 Material and Experimental Details 79
10.3 Results and Discussion 81
10.3.1 Microstructure 81
10.3.2 Fatigue Behavior 81
10.4 Conclusions 83
References 83
11 Impact of Various Surface Treatments on the S-N Curve of Additive Manufactured AlSi12 85
11.1 Introduction 85
11.2 Experimental Investigations 86
11.3 Results 87
11.3.1 Chemical Composition 87
11.3.2 Metallography 88
11.3.3 Investigation of Specimen Surfaces 89
11.4 Results of Fatigue Testing 90
References 91
12 Fatigue Properties of Powder Bed Fused Inconel 718 in As-Built Surface Condition 92
12.1 Introduction 92
12.2 Materials and Methods 93
12.2.1 Specimen Manufacture 93
12.2.2 Experimental Methods 94
12.3 Results and Discussion 94
12.3.1 XRCT Results 94
12.3.2 Fatigue Results 95
12.3.3 Fracture Surfaces 96
12.4 Conclusions 97
References 97
13 Application of Data Science Approach to Fatigue Property Assessment of Laser Powder Bed Fusion Stainless Steel 316L 99
13.1 Introduction 99
13.2 Fatigue Data 100
13.3 Neuro-fuzzy Modelling of Fatigue Life 101
13.3.1 Input Variables 101
13.3.2 Architecture of the Adaptive Neuro-fuzzy Inference System 101
13.4 Results and Discussion 102
13.5 Conclusions 104
References 105
14 Influence of Surface Orientation and Segmentation on the Notch Fatigue Behavior of as-Built DMLS Ti6Al4V 106
14.1 Introduction 106
14.2 Curved Surface Quality Generated by the PBF Process 107
14.3 Experimental Details 108
14.4 Results and Discussion 110
14.5 Conclusions 111
References 112
15 Characterization of the Cyclic Material Behavior of AlSi10Mg and Inconel® 718 Produced by SLM 113
15.1 Introduction 113
15.2 Experimental Campaign 114
15.2.1 Specimens and Reference System 114
15.2.2 Test Equipment 115
15.3 Results 117
15.4 Conclusions 118
References 118
Fatigue Crack Propagation 120
16 Review of Current Progress in 3D Linear Elastic Fracture Mechanics 121
16.1 Introduction 121
16.2 Stress Singularities 122
16.2.1 2D Linear Elastic Fracture Mechanics 122
16.2.2 3D Linear Elastic Fracture Mechanics 123
16.3 3D Stress States, Fracture and Fatigue Phenomena 124
16.3.1 Effect of 3D Corner Singularity of Fatigue Crack Growth 124
16.3.2 On Evaluation of Edge Singularities Near Vertex Points 124
16.3.3 Coupled Fracture Mode (O-mode) 125
16.3.4 Local Stress Intensity Factor Distribution 125
16.3.5 Surface Displacements at Crack Tip 126
16.3.6 Williams Asymptotic Series Expansion 126
16.3.7 Fracture Scaling Laws in 3D LEFM 126
16.4 Conclusion 127
References 127
17 An Improved Prediction of the Effective Range of Stress Intensity Factor in Fatigue Crack Growth 128
17.1 Introduction 128
17.2 Background to the Model 129
17.3 Specimen Geometries and Experimental Techniques 131
17.4 Concluding Remarks 133
References 133
18 Short and Long Crack Growth of Aluminium Cast Alloys 134
18.1 Introduction 134
18.2 Crack Resistance Curve 135
18.3 In Situ Crack Propagation Tests 136
18.4 Conclusions 138
References 139
19 Evaluation of Strain Controlled Fatigue and Crack Growth Behaviour of Al–3.4Mg Alloy 141
19.1 Introduction 141
19.2 Precipitation Strengthening Heat Treatment 142
19.3 Experimental Procedure 143
19.3.1 Fatigue Crack Growth Test 143
19.3.2 Strain Controlled Low Cycle Fatigue Test 143
19.4 Numerical Procedure 144
19.4.1 eXtended Finite Element Method (XFEM) 144
19.4.2 Kinematic Hardening Chaboche Model 144
19.5 Results and Discussion 145
19.5.1 Experimental Results 145
19.5.2 Numerical Results 146
19.6 Conclusions 148
References 148
20 Numerical Analysis of the Influence of Crack Growth Scheme on Plasticity Induced Crack Closure Results 149
20.1 Introduction 149
20.2 Numerical Model 150
20.3 Results 152
20.4 Conclusions 154
References 154
21 Towards Quantitative Explanation of Effective Thresholds of Mode III Fatigue Crack Propagation in Metals 155
21.1 Introduction 155
21.2 Mode II Effective Threshold 157
21.2.1 Influence of Crystal Lattice 158
21.2.2 Influence of Secondary Phases 159
21.3 Mode III Effective Threshold 159
21.4 Summary 160
References 161
22 Crack Propagation Under Cyclic Bending in Welded Specimens After Heat Treatment 162
22.1 Introduction 162
22.2 Experimental Procedure 163
22.2.1 Material and Specimen 163
22.2.2 Fatigue Tests 164
22.3 Test Results and Discussion 164
22.4 Conclusions 166
References 167
23 Crack Propagation in the Threshold Stress Intensity Region a Short Review 168
23.1 Introduction 169
23.2 The Threshold Region 170
23.3 Effect of Crack Geometry 171
23.4 Crack Closure Models 171
23.5 Conclusions 172
References 172
24 A Stress Intensity Factor Study for a Pressure Vessel CT Specimen Using Finite Element Method 174
24.1 Introduction 174
24.2 Analysis and Results 176
24.3 Conclusions 177
References 179
25 Micro-notch Size Effect on Small Fatigue Crack Propagation of Nickel-Based Superalloy GH4169 180
25.1 Introduction 180
25.2 Experiment Procedure 181
25.3 Results and Discussion 182
25.3.1 Material Properties After Heat Treatment 182
25.3.2 Effect of Micro-notch Size on Fatigue Life 183
25.3.3 Effect of Micro-notch Size on Fatigue Crack Initiation and Propagation 184
25.4 Conclusions 185
References 186
Probabilistic Methods 187
26 The Interactive Method—Reliable and Reproducible S-N-Curves for Materials 188
26.1 The Interactive Procedure 188
26.2 Fatigue Resistances of Systems 190
26.2.1 General 190
26.2.2 Reinforcement Steel for Concrete Structures with Fatigue Tension Actions 190
26.2.3 Fatigue Shear-Loaded Fastener 191
26.2.4 Prestressing Steel Loaded by Fatigue Tension 191
26.3 Summary 194
References 194
27 Probability Distribution Type for the Accumulated Damage from Miner’s Rule in Fatigue Design 196
27.1 Introduction 196
27.1.1 Stress-Life Fatigue Analysis Process 197
27.1.2 Probabilistic Methods: Monte Carlo Simulation 197
27.1.3 Previous Literature on the Probability Distribution Type for the Accumulated Fatigue Damage from Miner’s Rule 198
27.2 Case Study Definition 198
27.2.1 Statistical Characterisation of Fatigue Design Parameters 199
27.3 Results: Statistical Characterisation of Accumulated Damage 200
27.3.1 Impact of Results on the Development of a Probabilistic Approach 201
27.4 Conclusion 202
References 202
28 Evaluation of Fatigue Properties of S355 J2 and S355 J0 by Using ProFatigue Software 204
28.1 Introduction 204
28.2 Studied Materials and Specimens 205
28.3 Applied Models for S–N Field Assessment 207
28.3.1 Wöhler Curve as Fitted Using Basquin’s Equation 207
28.3.2 Probabilistic Model 208
28.4 Results Discussion 208
28.5 Conclusions 209
References 209
29 Updating the Failure Probability of Miter Gates Based on Observation of Water Levels 211
29.1 Introduction 211
29.2 Equivalent Stress Range 212
29.3 Calibrating Fracture Mechanics Model 213
29.4 Probability of Detection 216
29.5 Updating Failure Probability 216
29.6 Conclusion 218
References 218
Fatigue Modelling 219
30 Comparison of Several Optimized Methods for Mean Stress Effect Evaluating the Stress-Life Prediction 220
30.1 Introduction 220
30.2 Evaluation and Its Results 222
30.2.1 MSE Methods 222
30.2.2 Used Experimental Data 222
30.2.3 Analysis and the Results 223
30.3 Discussion 224
30.4 Conclusion 226
References 226
31 Application of the Nonlinear Fatigue Damage Cumulative on the Prediction for Rail Head Checks Initiation and Wear Growth 227
31.1 Introduction 227
31.2 Modification of the Nonlinear Fatigue Damage Cumulative Model 228
31.3 Prediction Method for the Coexistence of Rail HC Initiation and Wear 229
31.4 Comparison Linear and Nonlinear Cumulative Fatigue Damage Models 230
31.5 Validation 231
31.6 Conclusions 232
References 232
32 Fatigue Life Prediction for Component with Local Structural Discontinuity Based on Stress Field Intensity 233
32.1 Introduction 233
32.2 Stress Field Intensity Approach 234
32.3 Modified SFI Approach 235
32.4 Example of Application of Modified SFI Approach 236
32.4.1 Plate Specimen with a Circle Notch 236
32.4.2 Engineering Notched Specimen 238
32.5 Conclusion 239
References 239
33 Low Cycle Fatigue Life Estimation of P91 Steel by Strain Energy Based Approach 240
33.1 Introduction 240
33.2 Material and Experimental Procedures 241
33.3 Low Cycle Fatigue Behavior 241
33.4 Energy Based Fatigue Models: Background 242
33.4.1 Average Plastic Strain Energy 243
33.4.2 Prediction of Fatigue Life from Energy 243
33.4.3 Prediction of Fatigue Toughness 244
33.5 Conclusion 245
References 246
34 Evaluation of Regression Tree-Based Durability Models for Spring Fatigue Life Assessment 247
34.1 Introduction 247
34.2 Methodology 248
34.3 Results and Discussions 250
34.4 Conclusion 253
References 254
Multiaxial Fatigue 255
35 Prediction of Fatigue Crack Initiation Life in Notched Cylindrical Bars Under Multiaxial Cycling Loading 256
35.1 Introduction 256
35.2 Experimental and Numerical Procedures 257
35.3 Results 259
35.3.1 Crack Initiation Sites and Crack Paths 259
35.4 Conclusions 261
References 261
36 Multiaxial Fatigue Analysis of Stainless Steel Used in Marine Structures 263
36.1 Introduction 264
36.2 Material and method 264
36.3 Introducing Critical Plane Models 266
36.3.1 Wang-Brown Model (WB) 266
36.3.2 Fatemi-Socie Model 266
36.3.3 Liu I and Liu II Model 267
36.4 Fatigue Life Results 267
36.5 Conclusions 268
References 268
37 On the Application of SK Critical Plane Method for Multiaxial Fatigue Analysis of Low Carbon Steel 270
37.1 Introduction 270
37.2 Description of the Experiments 271
37.3 Multiaxial Fatigue Analysis with Critical Plane Methods 272
37.3.1 Suman-Kallmeyer (SK) Critical Plane Method 272
37.3.2 Wang-Brown (WB) Critical Plane Method 273
37.3.3 Fatemi-Socie (FS) Critical Plane Method 273
37.3.4 Liu 1 and Liu 2 Critical Plane Method 273
37.4 Fatigue Life Results and Discussion 274
37.5 Conclusions 275
References 275
Very High Cycle Fatigue 277
38 Fatigue Testing at 1000 Hz Testing Frequency 278
38.1 Introduction 278
38.2 Effects of the Loading Frequency on Fatigue Life 279
38.2.1 Temperature 280
38.2.2 Environment 281
38.2.3 Strain Rate 281
38.3 Temperature Records 281
38.4 Summary and Outlook 282
References 283
39 Influence of Microstructural Inhomogeneities on the Fatigue Crack Growth Behavior Under Very Low Amplitudes for Two Different Aluminum Alloys 284
39.1 Introduction 285
39.2 Material and Testing 285
39.3 Experimental Results and Discussion 287
39.3.1 Fatigue Crack Growth Thresholds 287
39.3.2 Fatigue Crack Growth at Constant Stress Intensity Factors 288
39.4 Conclusion 290
References 290
40 Effect of Ultrasonic Deep Rolling on High-Frequency and Ultrasonic Fatigue Behavior of TC4 292
40.1 Introduction 292
40.2 Experimental Procedure 293
40.2.1 Sample Preparation and Fatigue Tests 293
40.2.2 Microstructure Observations and Mechanical Measurements 294
40.3 Results and Discussions 294
40.3.1 Observations of Microstructure 294
40.3.2 Fatigue Properties of High-Frequency Fatigue 296
40.3.3 Fatigue Properties of Ultrasonic Fatigue 297
References 299
Applications/Case Studies 300
41 Microinclusion and Fatigue Performance of Bearing Rolling Elements 301
41.1 Introduction 301
41.2 Materials and Method 303
41.3 Discussion and Conclusions 305
References 305
42 Strength Analysis of Tramway Bogie Frame 307
42.1 Introduction 307
42.2 Stress Calculation 307
42.3 Static and Fatigue Tests 310
42.4 Fatigue Service Life 312
References 313
43 A Study of the Shot Peening Effect on the Fatigue Life Improvement of Al 7475-T7351 3PB Specimens 315
43.1 Introduction 315
43.2 Materials and Experimental Procedures 316
43.3 Results and Discussion 318
43.4 Conclusions 319
References 320
44 Investigation of Mechanical Properties and Fatigue of Friction Stir Spot Welded Light Metals 322
44.1 Introduction 323
44.2 Material Properties (AZ31B) 324
44.3 Static Tension Tests 324
44.4 Fatigue Tests 325
44.5 Results 326
References 327
45 Advanced Development of Hysteresis Measurement Characteristics for Early Detection of Fatigue Damages on Fasting Systems in Concrete 329
45.1 Introduction 329
45.2 Basic Principals 330
45.2.1 Fatigue and the S/N Curve 330
45.2.2 Viscoelastic Material Model 330
45.3 Hysteresis Model 331
45.4 Characteristics of the Adjustment Parameters 332
45.5 Results 333
45.6 Conclusion 334
References 335
46 Mechanics and Evaluation of Early Damage 336
46.1 Introduction 336
46.2 Phenomena Associated with Progression of Early Damage 337
46.2.1 Surface Roughness 338
46.2.2 Temperature Evolution 338
46.2.3 Change of Material Constants with Damage Accumulation 339
46.3 Conclusion 341
References 342
Risk Analysis and Safety of Large Structures and Structural Details 343
47 Fatigue Damage Factor Calibration for Long-Span Cable-Stayed Bridge Decks 344
47.1 Introduction 345
47.2 Modeling Traffic Simulations 346
47.2.1 Modeling of the Cable-Stay Bridge 346
47.2.2 Modeling of the Traffic 346
47.2.3 Computation of Damage Equivalent Factor ? 347
47.3 Results for the Case Study 348
47.3.1 Critical Length and Stress Range in the Main Deck Girders 348
47.3.2 Critical Length and ?-Factor for the Stay-Cables 348
47.4 Conclusions 350
References 350
48 Fatigue Analysis of a Concrete Chimney Under Wind Loads 352
48.1 Introduction 352
48.2 Dynamic Analysis Procedure 353
48.3 Description of the Chimney Structure and Numerical Model 354
48.4 Results 355
48.5 Fatigue Analysis on the Basis of ABNT NBR 6118:2014 356
48.6 Conclusion 357
References 357
49 On the Calculation of Offshore Wind Turbine Load Spectra for Fatigue Design 358
49.1 Introduction 358
49.2 Fatigue Design Methodology 359
49.2.1 OWT Model 360
49.3 Analysis of Fatigue Load Spectra Uncertainty 360
49.3.1 Scaled Results of D from t = 3600  s to T = 60,000 s 362
49.4 Conclusions 365
References 365
Numerical Methods 366
50 The Natural Neighbour Radial Point Interpolation Method to Predict the Compression and Traction Behavior of Thermoplastics 367
50.1 Introduction 368
50.1.1 The Natural Neighbor Radial Point Interpolation Method (NNRPIM) 368
50.1.2 Elasto-Plastic Formulation 369
50.2 Numerical Results 371
50.3 Conclusions 372
References 373
51 The Elasto-plastic Analysis of Polymers Subject to Traction and Compression Using Advanced Discretization Techniques 374
51.1 Introduction 375
51.1.1 The RPIM Formulation 376
51.1.2 Elasto-plastic Constitutive Model 376
51.2 Numerical Results 377
51.3 Conclusions 379
References 379
52 Fracture Analysis of Semi-circular Bend (SCB) Specimen: A Numerical Study 380
52.1 Introduction 380
52.1.1 SIF Determination Using Numerical Approach 381
52.2 Solid Mechanics, Basis and Formulation 382
52.3 Analysis and Results 382
52.3.1 The First FEM Study 383
52.3.2 The Second FEM Study 383
52.4 Conclusion 385
References 385

Erscheint lt. Verlag 7.5.2019
Reihe/Serie Structural Integrity
Structural Integrity
Zusatzinfo XII, 413 p. 211 illus., 149 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Damage evaluation and fatigue design • Fatigue behaviour modelling and simulation • Fatigue crack growth • ICMFM19 • Structural integrity assessments
ISBN-10 3-030-13980-8 / 3030139808
ISBN-13 978-3-030-13980-3 / 9783030139803
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen

von Rainer Müller

eBook Download (2023)
De Gruyter (Verlag)
54,95