Seismic Structural Health Monitoring (eBook)

From Theory to Successful Applications
eBook Download: PDF
2019 | 1st ed. 2019
XII, 447 Seiten
Springer International Publishing (Verlag)
978-3-030-13976-6 (ISBN)

Lese- und Medienproben

Seismic Structural Health Monitoring -
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book includes a collection of state-of-the-art contributions addressing both theoretical developments in, and successful applications of, seismic structural health monitoring (S2HM). Over the past few decades, Seismic SHM has expanded considerably, due to the growing demand among various stakeholders (owners, managers and engineering professionals) and researchers. The discipline has matured in the process, as can be seen by the number of S2HM systems currently installed worldwide. Furthermore, the responses recorded by S2HM systems hold great potential, both with regard to the management of emergency situations and to ordinary maintenance needs.

The book's 17 chapters, prepared by leading international experts, are divided into four major sections. The first comprises six chapters describing the specific requirements of S2HM systems for different types of civil structures and infrastructures (buildings, bridges, cultural heritage, dams, structures with base isolation devices) and for monitoring different phenomena (e.g. soil-structure interaction and excessive drift). The second section describes available methods and computational tools for data processing, while the third is dedicated to hardware and software tools for S2HM. In the book's closing section, five chapters report on state-of-the-art applications of S2HM around the world.

Preface 6
Contents 8
S2HM for Civil Structures 14
1 S2HM of Buildings in USA 15
1.1 Introduction and Rationale 16
1.2 Historical Background and Requisites 17
1.3 Early Applications 22
1.3.1 Using GPS for Direct Measurements of Displacements 22
1.3.2 Early Development—S2HM Use of Displacement Via Real-Time Double Integration of Accelerations 27
1.4 Brief Note on Other U.S. and Non-U.S. Developments Since 2000 37
1.5 Conclusions 38
References 39
2 Seismic Structural Health Monitoring of Bridges in British Columbia, Canada 43
2.1 Introduction 44
2.2 BCSIMS Architecture 45
2.2.1 Strong Motion Network 46
2.2.2 Structural Health Monitoring Network 48
2.3 Conclusion 59
References 60
3 Seismic Structural Health Monitoring of Cultural Heritage Structures 62
3.1 Introduction 62
3.2 The Role of Structural Health Monitoring in the Analysis and Preservation of Architectural Heritage 65
3.2.1 Vibration-Based Structural Health Monitoring for Cultural Heritage 69
3.2.2 Continuous Monitoring of Cultural Heritage and Wandering of Dynamic Parameters 70
3.3 Examples of Vibration-Based Investigation of Architectural Heritage 72
3.3.1 The Madonnina della Neve Church, an Example of Vibration-Based Structural Health Monitoring Aimed at Designing Seismic Strengthening Interventions 72
3.3.2 The Former Clinker Warehouse of Casale Monferrato, a 20th Century Industrial Architectural Heritage 76
3.4 Periodic Dynamic Investigations in Post-earthquake Scenarios 82
3.4.1 The Bell-Tower of Santa Maria Maggiore Cathedral in Mirandola, an Example of Dynamic Investigations in Post-earthquake Scenarios 83
3.5 Continuous Monitoring 86
3.5.1 The Sanctuary of Vicoforte, an Example of CH Building Subjected to Permanent Static and Seismic Structural Health Monitoring 87
References 91
4 Seismic and Structural Health Monitoring of Dams in Portugal 97
4.1 Introduction 97
4.2 Systems for Continuously Monitoring Vibrations in Large Dams 98
4.3 Monitoring and Modelling the Dynamic Behavior of Large Dams 98
4.4 Hardware and Software Components for Continuous Monitoring Vibrations Systems 100
4.5 The Need for Software Development 103
4.6 Numerical Modelling of Dam-Reservoir-Foundation Systems 106
4.7 Cabril Dam Seismic and Structural Health Monitoring System 107
4.7.1 Comparison of Experimental Modal Parameters with Numerical Modal Parameters 112
4.8 Measured Seismic Response 113
4.9 Baixo Sabor Dam SSHM System: Main Monitoring Results Under Ambient Excitation and Seismic Loading 116
4.10 Conclusions 120
References 122
5 Monitored Seismic Behavior of Base Isolated Buildings in Italy 124
5.1 Introduction 124
5.2 Seismic Behavior of Isolation Devices 127
5.2.1 Behaviour of HDRB Devices 128
5.2.2 Behaviour of CSS Devices 129
5.3 The New Jovine School in San Giuliano di Puglia 130
5.4 The Operative Centre of the Civil Protection Centre at Foligno 132
5.5 The Forestry Building of the Civil Protection Centre at Foligno 136
5.6 Building with Single Curve Surface Sliders 137
5.7 From Short Time to Real Time Monitoring 139
5.8 Conclusions 142
References 145
6 Identification of Soil-Structure Systems 147
6.1 Introduction 147
6.2 Identification of SSI Systems 150
6.2.1 Blind Modal Identification (BMID) Techniques 150
6.2.2 Model-Based Identification Techniques 165
6.3 Conclusions 171
References 173
Methods and Tools for Data Processing 176
7 Structural Health Monitoring: Real-Time Data Analysis and Damage Detection 177
7.1 Introduction 178
7.2 Real-Time SHM Data Analysis 179
7.3 Damage Detection Methods 188
7.4 Conclusion 201
References 202
8 Model Updating Techniques for Structures Under Seismic Excitation 204
8.1 Introduction 204
8.2 Previous Studies 206
8.2.1 FEM Updating with Linear Models for Seismic Performance Assessment 207
8.2.2 FEM Updating with Linear Models for Damage Detection 209
8.2.3 FEM Updating with Non-linear Models 211
8.3 Methods 211
8.3.1 Error Minimization-Based FEM Updating 211
8.3.2 Sensitivity-Based FEM Updating 212
8.4 Case Studies 213
8.4.1 Case1-Tall Building 214
8.4.2 Case 2-Stone Arch Bridge 216
8.5 Conclusions 218
References 219
9 Damage Localization Through Vibration Based S2HM: A Survey 222
9.1 Introduction 223
9.2 Damage Features Based on the Detection of Shape Irregularity 224
9.2.1 Modal and Operational Shapes 224
9.2.2 Shape Variation Due to a Loss of Stiffness 226
9.3 Damage Localization 228
9.3.1 Methods Based on Curvature 228
9.3.2 Methods Based on the Indirect Detection of Curvature Changes 230
9.4 Damage Indices and Thresholds 232
9.5 Case Studies 233
9.6 The UCLA Factor Building 233
9.7 The 7th Storey Portion of Building at UCSD 236
9.7.1 Damage Scenarios 237
9.8 Conclusions 238
References 239
10 Model–Based Methods of Damage Identification of Structures Under Seismic Excitation 241
10.1 Introduction 241
10.2 Elimination of Environmental Influences 244
10.3 Model-Based Damage Identification Based on Modal Parameters 245
10.3.1 Damage Identification of the Z24 Bridge 245
10.3.2 Earthquake Induced Damage of a Building: Simulated Case 251
10.3.3 Earthquake Induced Damage of a Building: Laboratory Experiment 254
10.4 Non-Linear System (Damage) Identification 258
10.5 Wave-Based Methods 259
10.6 Conclusions 261
References 262
Monitoring Tools 264
11 An Optical Technique for Measuring Transient and Residual Interstory Drift as Seismic Structural Health Monitoring (S2HM) Observables 265
11.1 Introduction 265
11.2 Optically-Based Measurements for Interstory Drift 268
11.3 Sensor Testbeds and Experimental Evaluation of DDPS Performance 270
11.3.1 Testbed #1: DDPS Inherent Measurement Performance 270
11.3.2 Testbed #2: DDPS Performance on a Laboratory Planar Frame 271
11.3.3 Testbed #3: DDPS Performance on a Scaled 3D Steel Frame Under Bidirectional Excitation 273
11.4 Model-Based Simulations of Sensor System Performance 275
11.5 Conclusions 276
References 279
12 Hardware and Software Solutions for Seismic SHM of Hospitals 281
12.1 Introduction 281
12.2 Design of Seismic SHM Systems for Health Facilities 283
12.2.1 Accuracy 285
12.2.2 Budget Compliance 286
12.2.3 Computational Burden 287
12.2.4 Durability 288
12.2.5 Ease of Use 288
12.3 Data Processing for Seismic SHM of Hospitals 288
12.4 Seismic SHM of Hospitals: Notes from a Field Experience 291
12.4.1 Structural Monitoring of Campobasso’s Main Hospital 292
12.4.2 Detection of Earthquake-Induced Damage 296
12.4.3 Dynamic Testing of Equipment 297
12.5 Conclusions 299
References 300
Applications of S2HM Around the World 303
13 S2HM in Some European Countries 304
13.1 Introduction 304
13.2 S2HM in Italy: The Italian Seismic Observatory of Structures 305
13.2.1 Data Analysis and Dissemination 310
13.3 S2HM in France: The French National Building Array Program 314
13.3.1 Description of the Buildings 315
13.3.2 Data Policy 319
13.3.3 Results at a Glance 321
13.4 S2HM in Greece—The ITSAK Experience 322
13.4.1 Instrumented Buildings 323
13.4.2 Instrumented Bridges 329
13.5 Seismic SHM and Testing for Cultural Heritage in Portugal 330
13.5.1 Operational Framework for Rapid Condition Screening of Heritage Structures 331
13.5.2 Instrumented Buildings and Data Analysis 333
13.6 Conclusions 340
References 341
14 S2HM Practice and Lessons Learned from the 2011 Tohoku Earthquake in Japan 345
14.1 Introduction 345
14.2 Lessons Learned from the 2011 Tohoku Earthquake 346
14.2.1 Ground Motions 346
14.2.2 Damaged Buildings 347
14.2.3 Response to Long-Period Long-Duration Earthquake Motion 348
14.2.4 Change in Dynamic Characteristics of Buildings During the 2011 Tohoku Earthquake 350
14.3 Influence Factors in the Dynamic Characteristics of Buildings 350
14.3.1 Target Building 350
14.3.2 Change in Dynamic Characteristics with Time 350
14.3.3 Amplitude Dependence of Dynamic Characteristics 352
14.4 Damage of High-Rise Buildings and Applications of S2HM to Emergency Management During the 2011 Tohoku Earthquake 354
14.4.1 Recorded Strong Motions and Damage of a High-Rise Building in Tokyo During the 2011 Tohoku Earthquake 354
14.4.2 Earthquake Early Warning and Real-Time Damage Assessment Systems, and Emergency Management During the 2011 Tohoku Earthquake 356
14.5 Conclusions 359
References 359
15 Building Structural Health Monitoring Under Earthquake and Blasting Loading: The Chilean Experience 361
15.1 Introduction 362
15.2 Monitoring 362
15.3 Identification and Monitoring System Experience 363
15.3.1 Building 1, Office Building 364
15.3.2 Building 2, Base Isolated Building 371
15.3.3 Building 3, Steel Building 376
15.4 Conclusions 380
References 382
16 Developments in Seismic Instrumentation and Health Monitoring of Structures in New Zealand 384
16.1 Introduction 384
16.2 Seismic Monitoring Network in New Zealand 386
16.2.1 Ground Motion Monitoring 386
16.2.2 Structural Response Monitoring 388
16.2.3 Learning from Recent Earthquake Events 389
16.3 Long Term Structural Health Monitoring 390
16.4 Structure and Instrumentation 393
16.4.1 Thorndon Bridge 393
16.4.2 Instrumentation 393
16.4.3 Strong Earthquakes Recorded During Monitoring Period Between 1st of January and 31st of December 2013 395
16.5 Results and Discussion 397
16.5.1 Dynamic Characteristics of the Bridge 397
16.5.2 Vibration Intensity of the Bridge 398
16.5.3 Earthquake-Induced Vibration Data 401
16.6 Conclusions 403
References 404
17 Seismic Monitoring of Seismically Isolated Bridges and Buildings in Japan—Case Studies and Lessons Learned 406
17.1 Introduction 407
17.2 Seismic Monitoring of Seismically-Isolated Short and Medium Span Bridges 408
17.2.1 Matsunohama Viaduct 409
17.2.2 Yamaage Bridge 412
17.3 Seismic Monitoring of Seismically-Isolated Long-Span Bridges 416
17.3.1 Seismic Monitoring of Yokohama-Bay Cable-Stayed Bridge 417
17.4 Seismic Monitoring of Seismically-Isolated Buildings 423
17.4.1 Responses of 20-Story Base-Isolated Building 424
17.5 Seismic Retrofit of National Museum of Western Art Tokyo Using Base-Isolation System 433
17.5.1 Seismic Response of the Building During 2011 Great East Japan (Tohoku) Earthquake 436
17.5.2 Analytical Hysteresis Model 438
17.5.3 Analytical Structural Model 440
17.5.4 Seismic Response Analyses 440
17.6 Conclusions 443
References 445

Erscheint lt. Verlag 24.4.2019
Reihe/Serie Springer Tracts in Civil Engineering
Zusatzinfo XII, 447 p.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Bridge Health Management • Building Performance Assessment • Civil Structural Health Monitoring • Damage Identification • emergency management • Life-cycle Management • Multi-hazard Environment • S2HM • Seismic Excitation • Seismic monitoring • Seismic SHM • Sensors for SHM • Signal Processing for SHM
ISBN-10 3-030-13976-X / 303013976X
ISBN-13 978-3-030-13976-6 / 9783030139766
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 34,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99