Thermal System Optimization (eBook)

A Population-Based Metaheuristic Approach
eBook Download: PDF
2019 | 1st ed. 2019
XVI, 477 Seiten
Springer International Publishing (Verlag)
978-3-030-10477-1 (ISBN)

Lese- und Medienproben

Thermal System Optimization - Vivek K. Patel, Vimal J. Savsani, Mohamed A. Tawhid
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a wide-ranging review of the latest research and development directions in thermal systems optimization using population-based metaheuristic methods. It helps readers to identify the best methods for their own systems, providing details of mathematical models and algorithms suitable for implementation.

To reduce mathematical complexity, the authors focus on optimization of individual components rather than taking on systems as a whole. They employ numerous case studies: heat exchangers; cooling towers; power generators; refrigeration systems; and others. The importance of these subsystems to real-world situations from internal combustion to air-conditioning is made clear.

The thermal systems under discussion are analysed using various metaheuristic techniques, with comparative results for different systems. The inclusion of detailed MATLAB® codes in the text will assist readers-researchers, practitioners or students-to assess these techniques for different real-world systems.

Thermal System Optimization is a useful tool for thermal design researchers and engineers in academia and industry, wishing to perform thermal system identification with properly optimized parameters. It will be of interest for researchers, practitioners and graduate students with backgrounds in mechanical, chemical and power engineering.



Dr. Vivek Patel is working as an assistant professor at P.D. Petroleum University, Gandhinagar, India. He has completed his Ph.D. in the filed of thermal system optimization from S.V. National Institute of Technology, Surat, India. His thesis titled, 'Design Optimization of Thermal Systems Using Advanced Optimization Techniques'. He has more than 13 years of academic experience. His research area includes thermal system design, advanced optimization techniques, solar thermal systems and energy management.

Dr. Vimal Savsani is working as an assistant professor at P.D. Petroleum University, Gandhinagar, India. He has completed his Ph.D. in the filed of mechanical design optimization from S.V. National Institute of Technology, Surat, India. His thesis titled, 'Design Optimization of Mechanical Elements Using Advance Optimization Techniques '. He was a post-doctoral fellow at Thompson Rivers University, BC,Canada. He has also to his credit one book titled 'Mechanical design optimization using advanced optimization techniques', published by Springer, London. He has more than 11 years of academic experience. His research area includes Advanced meta-heuristics, mechanical system desing and optimization, automobile suspension optimization, structure optimization and wind farm layout optimization.

Mohamed A. Tawhid received his PhD in Applied Mathematics from the University of Maryland Baltimore County, Maryland, USA. From 2000 to 2002, he was a Postdoctoral Fellow at the Faculty of Management, McGill University, Montreal, Quebec, Canada. Currently, he is a full professor at Thompson Rivers University. His recent research interests are best described as metaheuristic/ evolutionary computing/artificial intelligence algorithms and their applications in engineering and data science. He has served on editorial board several journals. He has also worked on several industrial projects in BC, Canada.

Dr. Vivek Patel is working as an assistant professor at P.D. Petroleum University, Gandhinagar, India. He has completed his Ph.D. in the filed of thermal system optimization from S.V. National Institute of Technology, Surat, India. His thesis titled, "Design Optimization of Thermal Systems Using Advanced Optimization Techniques". He has more than 13 years of academic experience. His research area includes thermal system design, advanced optimization techniques, solar thermal systems and energy management.Dr. Vimal Savsani is working as an assistant professor at P.D. Petroleum University, Gandhinagar, India. He has completed his Ph.D. in the filed of mechanical design optimization from S.V. National Institute of Technology, Surat, India. His thesis titled, "Design Optimization of Mechanical Elements Using Advance Optimization Techniques ". He was a post-doctoral fellow at Thompson Rivers University, BC,Canada. He has also to his credit one book titled "Mechanical design optimization using advanced optimization techniques", published by Springer, London. He has more than 11 years of academic experience. His research area includes Advanced meta-heuristics, mechanical system desing and optimization, automobile suspension optimization, structure optimization and wind farm layout optimization.Mohamed A. Tawhid received his PhD in Applied Mathematics from the University of Maryland Baltimore County, Maryland, USA. From 2000 to 2002, he was a Postdoctoral Fellow at the Faculty of Management, McGill University, Montreal, Quebec, Canada. Currently, he is a full professor at Thompson Rivers University. His recent research interests are best described as metaheuristic/ evolutionary computing/artificial intelligence algorithms and their applications in engineering and data science. He has served on editorial board several journals. He has also worked on several industrial projects in BC, Canada.

Preface 6
Contents 9
1 Introduction 15
Abstract 15
References 18
2 Metaheuristic Methods 20
Abstract 20
2.1 Genetic Algorithm (GA) 21
2.1.1 Reproduction 21
2.1.2 Crossover 22
2.1.3 Mutation 22
2.2 Particle Swarm Optimization (PSO) Algorithm 23
2.3 Differential Evolution (DE) Algorithm 25
2.4 Artificial Bee Colony (ABC) Algorithm 27
2.5 Cuckoo Search Algorithm (CSA) 29
2.6 Teaching–Learning-Based Optimization (TLBO) Algorithm 30
2.6.1 Teacher Phase 31
2.6.2 Learner Phase 31
2.7 Symbiotic Organism Search (SOS) Algorithm 32
2.7.1 Mutualism Phase 33
2.7.2 Commensalism Phase 33
2.7.3 Parasitism Phase 34
2.8 Water Wave Optimization (WWO) Algorithm 35
2.8.1 Propagation Operator 35
2.8.2 Refraction Operator 36
2.8.3 Breaking Operator 36
2.9 Heat Transfer Search (HTS) Algorithm 37
2.10 Passing Vehicle Search (PVS) Algorithm 40
2.11 Sine Cosine Algorithm (SCA) 42
2.12 Parameter Tuning of Algorithms 43
References 45
3 Thermal Design and Optimization of Heat Exchangers 46
Abstract 46
3.1 Shell and Tube Heat Exchanger (STHE) 46
3.1.1 Thermal Model 50
3.1.2 Case Study, Objective Function Description, and Constraints 58
3.1.3 Results and Discussion 60
3.2 Plate-Fin Heat Exchanger (PFHE) 62
3.2.1 Thermal Model 66
3.2.2 Case Study, Objective Function Description, and Constraints 70
3.2.3 Results and Discussion 72
3.3 Fin and Tube Heat Exchanger (FTHE) 75
3.3.1 Thermal Model 77
3.3.2 Case Study, Objective Function Description, and Constraints 81
3.3.3 Results and Discussion 83
3.4 Regenerative Heat Exchanger (Rotary Regenerator) 85
3.4.1 Thermal Model 87
3.4.2 Case Study, Objective Function Description, and Constraints 91
3.4.3 Results and Discussion 92
3.5 Plate Heat Exchanger (PHE) 95
3.5.1 Thermal Model 97
3.5.2 Case Study, Objective Function Description, and Constraints 102
3.5.3 Results and Discussion 103
References 105
4 Thermal Design and Optimization of Heat Engines and Heat Pumps 112
Abstract 112
4.1 Carnot Heat Engine 113
4.1.1 Thermal Model 116
4.1.2 Case Study, Objective Function Description, and Constraints 118
4.1.3 Results and Discussion 119
4.2 Rankine Heat Engine 121
4.2.1 Thermal Model 124
4.2.2 Case Study, Objective Function Description, and Constraints 127
4.2.3 Results and Discussion 128
4.3 Stirling Heat Engine 131
4.3.1 Thermal Model 133
4.3.2 Case Study, Objective Function Description, and Constraints 137
4.3.3 Results and Discussion 138
4.4 Brayton Heat Engine 141
4.4.1 Thermal Model 144
4.4.2 Case Study, Objective Function Description, and Constraints 148
4.4.3 Results and Discussion 149
4.5 Ericsson Heat Engine 152
4.5.1 Thermal Model 154
4.5.2 Case Study, Objective Function Description, and Constraints 157
4.5.3 Results and Discussion 158
4.6 Diesel Heat Engine 160
4.6.1 Thermal Model 163
4.6.2 Case Study, Objective Function Description, and Constraints 166
4.6.3 Results and Discussion 167
4.7 Radiative-Type Heat Engine 169
4.7.1 Thermal Model 171
4.7.2 Case Study, Objective Function Description, and Constraints 174
4.7.3 Results and Discussion 175
4.8 Stirling Heat Pump 177
4.8.1 Thermal Model 180
4.8.2 Case Study, Objective Function Description, and Constraints 183
4.8.3 Results and Discussion 184
4.9 Heat Pump Working on Reverse Brayton Cycle 187
4.9.1 Thermal Model 189
4.9.2 Case Study, Objective Function Description, and Constraints 192
4.9.3 Results and Discussion 193
4.10 Absorption Heat Pump 195
4.10.1 Thermal Model 198
4.10.2 Case Study, Objective Function Description, and Constraints 201
4.10.3 Results and Discussion 202
References 204
5 Thermal Design and Optimization of Refrigeration Systems 212
Abstract 212
5.1 Carnot Refrigerator 213
5.1.1 Thermal Model 216
5.1.2 Case Study, Objective Function Description, and Constraints 220
5.1.3 Results and Discussion 221
5.2 Single-Effect Vapor Absorption Refrigerator 223
5.2.1 Thermal Model 226
5.2.2 Case Study, Objective Function Description, and Constraints 229
5.2.3 Results and Discussion 230
5.3 Multi-temperature Vapor Absorption Refrigerator 232
5.3.1 Thermal Model 235
5.3.2 Case Study, Objective Function Description, and Constraints 239
5.3.3 Results and Discussion 240
5.4 Cascade Refrigerator 242
5.4.1 Thermal Model 246
5.4.2 Case Study, Objective Function Description, and Constraints 250
5.4.3 Results and Discussion 252
5.5 Ejector Refrigerator 254
5.5.1 Thermal Model 257
5.5.2 Case Study, Objective Function Description, and Constraints 262
5.5.3 Results and Discussion 263
5.6 Thermo-Electric Refrigerator 265
5.6.1 Thermal Model 267
5.6.2 Case Study, Objective Function Description, and Constraints 270
5.6.3 Results and Discussion 271
5.7 Stirling Cryogenic Refrigerator 274
5.7.1 Thermal Model 277
5.7.2 Case Study, Objective Function Description, and Constraints 280
5.7.3 Results and Discussion 281
5.8 Ericsson Cryogenic Refrigerator 283
5.8.1 Thermal Model 286
5.8.2 Case Study, Objective Function Description, and Constraints 290
5.8.3 Results and Discussion 291
References 293
6 Thermal Design and Optimization of Power Cycles 300
Abstract 300
6.1 Rankine Power Cycle 301
6.1.1 Thermal Model 304
6.1.2 Case Study, Objective Function Description, and Constraints 307
6.1.3 Results and Discussion 309
6.2 Brayton Power Cycle 312
6.2.1 Thermal Model 314
6.2.2 Case Study, Objective Function Description, and Constraints 318
6.2.3 Results and Discussion 319
6.3 Braysson Power Cycle 321
6.3.1 Thermal Model 323
6.3.2 Case Study, Objective Function Description, and Constraints 326
6.3.3 Results and Discussion 327
6.4 Kalina Power Cycle 329
6.4.1 Thermal Model 332
6.4.2 Case Study, Objective Function Description, and Constraints 335
6.4.3 Results and Discussion 336
6.5 Combined Brayton and Inverse Brayton Power Cycle 338
6.5.1 Thermal Model 340
6.5.2 Case Study, Objective Function Description, and Constraints 342
6.5.3 Results and Discussion 343
6.6 Atkinson Power Cycle Optimization 346
6.6.1 Thermal Model 348
6.6.2 Case Study, Objective Function Description, and Constraints 350
6.6.3 Results and Discussion 351
References 353
7 Thermal Design and Optimization of Few Miscellaneous Systems 358
Abstract 358
7.1 Cooling Tower 358
7.1.1 Thermal Model 361
7.1.2 Case Study, Objective Function Description, and Constraints 367
7.1.3 Results and Discussion 368
7.2 Heat Pipe 370
7.2.1 Thermal Model 373
7.2.2 Case Study, Objective Function Description, and Constraints 377
7.2.3 Results and Discussion 378
7.3 Micro-channel Heat Sink 381
7.3.1 Thermal Model 383
7.3.2 Case Study, Objective Function Description, and Constraints 387
7.3.3 Results and Discussion 388
7.4 Solar Air Heater 391
7.4.1 Thermal Model 393
7.4.2 Case Study, Objective Function Description, and Constraints 395
7.4.3 Results and Discussion 396
7.5 Solar Water Heater 398
7.5.1 Thermal Model 400
7.5.2 Case Study, Objective Function Description, and Constraints 403
7.5.3 Results and Discussion 404
7.6 Solar Chimney Power Plant 407
7.6.1 Thermal Model 409
7.6.2 Case Study, Objective Function Description, and Constraints 411
7.6.3 Results and Discussion 411
7.7 Turbojet Engine 413
7.7.1 Thermal Model 415
7.7.2 Case Study, Objective Function Description, and Constraints 416
7.7.3 Results and Discussion 417
References 420
MATLAB Code of Optimization Algorithms 427
Index 482

Erscheint lt. Verlag 14.2.2019
Zusatzinfo XVI, 477 p. 174 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Chemie
Technik Bauwesen
Schlagworte meta-heuristics • Optimization of heat exchangers • Thermal design • Thermal Modelling • Thermal Systems • Thermo-economic Analysis
ISBN-10 3-030-10477-X / 303010477X
ISBN-13 978-3-030-10477-1 / 9783030104771
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90