Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings - Thuy T. Pham

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings

(Autor)

Buch | Softcover
XV, 107 Seiten
2019 | 1. Softcover reprint of the original 1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-07518-7 (ISBN)
128,39 inkl. MwSt

This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.


Introduction .-  Background .- Algorithms .-  Point Anomaly Detection: Application to Freezing of Gait Monitoring .-  Collective Anomaly Detection: Application to Respiratory Artefact Removals.-  Spike Sorting: Application to Motor Unit Action Potential Discrimination .- Conclusion .


Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo XV, 107 p. 35 illus., 32 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 203 g
Themenwelt Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik
Schlagworte Anomaly Detection for Biomedical Data • Anomaly Score Based Detector • Automated Feature Selection • Feature Selection Based on Voting • Fog Detection Systems • Forced Oscillation Measurements • Improving Classification Performance • Learning for Detecting Freezing of Gait Events • Novelty detection • Respiratory Artifact Detection • Subject-independent Classifiers • Unsupervised Anomaly Detection • Unsupervised Artifact Detection • Unsupervised Classification of Biomedical Data • Unsupervised Multi-class Sorting • Unsupervised Spike Sorting • Voting Process for Feature Selection
ISBN-10 3-030-07518-4 / 3030075184
ISBN-13 978-3-030-07518-7 / 9783030075187
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Spiraldynamik - programmierte Therapie für konkrete Resultate

von Christian Larsen

Buch | Hardcover (2021)
Thieme (Verlag)
105,00