Sustainable Technologies for Nearly Zero Energy Buildings (eBook)

Design and Evaluation Methods
eBook Download: PDF
2019 | 1. Auflage
XV, 398 Seiten
Springer-Verlag
978-3-030-02822-0 (ISBN)

Lese- und Medienproben

Sustainable Technologies for Nearly Zero Energy Buildings -  Sašo Medved,  Suzana Domjan,  Ciril Arkar
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents cutting-edge work on the energy efficiency and environmental sustainability of buildings, examining EU policies, regulations and technologies for complex systems such as passive buildings, sustainable buildings and, as part of the Energy Performance of Building Directive (EPBD), nearly Zero Energy Buildings (nZEB) requirements. It explores a wide range of topics, including indoor environment requirements, building physics, in-situ experiments to determine the thermal properties of buildings, nZEB requirements, building service technology, and methods of evaluating energy efficiency and environmental impacts. It also provides an overview of the best available technologies for nZEB, including those for the rational use of energy, utilization of renewable energy sources, EPBD systems and calculation methods. This book is a valuable resource for students, researchers and practitioners of urban planning, and architecture, civil and mechanical engineering.

Sašo Medved is full professor and head of the Laboratory for Sustainable Technologies in Buildings at the University of Ljubljana, Slovenia. His research focuses on transformation of renewable energy sources, environmental engineering, building physics, the heat and mass transfer in urban environments, mitigating climate change.

Sašo Medved is full professor and head of the Laboratory for Sustainable Technologies in Buildings at the University of Ljubljana, Slovenia. His research focuses on transformation of renewable energy sources, environmental engineering, building physics, the heat and mass transfer in urban environments, mitigating climate change.

Preface 6
Contents 8
About the Authors 15
1 Indoor Comfort Requirements 16
Abstract 16
1.1 Indoor Thermal Comfort 17
1.1.1 Criteria for Indoor Environment Thermal Comfort Global Parameters 20
1.1.2 Integral Indicators of Indoor Thermal Comfort: PMV and PPD 26
1.1.3 Adaptive Model of Thermal Comfort 28
1.1.4 Local Indoor Thermal Comfort Indicators 29
1.2 Indoor Air Quality (IAQ) 30
1.2.1 Required Ventilation for IAQ 30
1.3 Visual Comfort 35
1.3.1 Criteria of Visual Comfort Parameters 36
1.4 Acoustic Comfort 39
1.4.1 Sound Recognition and Noise Protection 40
References 42
2 Energy Sources 43
Abstract 43
2.1 Renewable Energy Sources (RES) 45
2.1.1 Solar Energy 47
2.1.2 Geothermal Energy 51
2.1.3 Tidal Energy 53
2.2 Fuels as Energy Carriers 54
2.2.1 Non-renewable Fossil Fuels 57
2.2.1.1 Natural Gas 57
2.2.1.2 Liquefied Petroleum Gas 58
2.2.1.3 Lightweight Heating Oil 59
2.2.2 Renewable Fuels Made from Biomass 60
2.2.2.1 Solid Biomass Fuels 62
2.2.2.2 Liquid Biomass Fuels 63
2.2.2.3 Gaseous Biomass Fuels 64
2.3 Electricity 65
References 71
3 Introduction to Building Physics 73
Abstract 73
3.1 Heat Transfer in Building Structures 73
3.1.1 Thermal Transmittance of Building Structures (U-Value) 74
3.1.2 Thermal Transmittance of Homogeneous Structures 75
3.1.3 Thermal Transmittance of Structures with Closed Air Gap or Ventilated Air Layer 77
3.1.4 Thermal Transmittance of Green Building Structures 78
3.1.5 Thermal Transmittance of Building Structures in Contact with the Ground 80
3.1.6 Thermal Transmittance of Windows (and Doors) 81
3.1.7 Thermal Bridges 83
3.1.8 Specific Transmission Heat Transfer Coefficient (Average Thermal Transmittance of Building Envelope) 88
3.1.9 Total Solar Energy Transmittance of Windows (and Transparent Envelope Structures) 89
3.1.10 Heat Accumulation in Building Structures 90
3.2 Psychrometrics 95
References 97
4 Experimental Evaluation of Buildings’ Envelope Thermal Properties 98
Abstract 98
4.1 Semi-professional Tools and Applications for Evaluation of Indoor Comfort 98
4.2 In-Situ Determination of Heat Transfer Coefficient U of Building Structures 100
4.3 In-Situ Determination of Glazing Total Solar Energy Transmittance g 105
4.4 In-Situ Determination of the Building Envelope Thermal Insulation with Thermography 106
4.5 In-Situ Determination of Building Airtightness 109
4.6 In-Situ Determination of Overall Building Thermal Properties 112
Reference 116
5 Global Climate and Energy Performance of the Building 117
Abstract 117
5.1 Energy Performance of Building Directive (EPBD) and Nearly Zero Energy Buildings (NZEB) 119
5.2 Determination of Energy Performance of the Buildings 121
5.2.1 Time Step Intervals and Calculation Period 123
5.3 Determination of Building Energy Needs 124
5.3.1 Energy Need for Heating QNH 124
5.3.2 Energy Need for Cooling QNC: Monthly Calculation Period 128
5.3.3 Energy Need for Heating QNH and Cooling QHC: Hourly Calculation Method 130
5.3.4 Energy Need for Ventilation QV 133
5.3.5 Energy Need for Domestic Hot Water QW 133
5.3.6 Energy Need for Humidification QHU and Dehumidification QDHU of Indoor Air 134
5.3.7 Energy Need for Lighting QL 135
5.4 Delivered Energy for the Building Operation Qf 136
5.5 Primary Energy Needed for the Building Operation 139
References 141
6 Best Available Technologies (BAT) for On-Site and Near-by Generation of Heat for NZEB 142
Abstract 142
6.1 Local or Decentralized Heat Generators for Residential Buildings 143
6.1.1 Biomass Stoves and Furnaces 143
6.1.2 Electrical Heaters 146
6.2 Heat Generators for Central Heating Systems 147
6.2.1 Combustion Boilers 147
6.2.1.1 Thermal Efficiency of Combustion Boilers 149
6.2.1.2 Environmental Impacts of Combustion Boilers 153
6.2.2 Heat Pumps 154
6.2.2.1 Energy Sources for Heat Pumps 157
6.2.2.2 Efficiency and Design of HP 160
6.2.2.3 Environmental Impacts of HP 162
6.3 Solar Thermal Collectors 163
6.3.1 Thermal Efficiency of Solar Thermal Collectors 165
6.3.2 Production of Heat: Rule of Thumb 168
6.4 District Heating 169
6.5 Other Heat Generators 170
References 171
7 Best Available Technologies (BAT) for On-Site Electricity Generation for nZEB 172
Abstract 172
7.1 Photovoltaic (PV) Systems 173
7.1.1 Types of PV Cells 176
7.1.1.1 PV Cell Efficiency 177
7.1.2 PV Modules 180
7.1.2.1 Efficiency of PV Module 181
7.1.3 Building Integrated PV Modules 182
7.1.4 PV Systems 184
7.1.5 Production of Electricity: Rule of Thumb 185
7.1.6 Environmental Impacts of PV Cells 186
7.2 Small Scale Cogeneration 186
7.2.1 Cost Effectiveness 189
7.2.2 Environmental Benefits of mCHP 190
7.3 Wind Turbines 190
7.3.1 Wind Energy Potential 191
7.3.2 Rated Power and Efficiency of Wind Turbines 193
7.3.3 Types of Wind Turbines 195
7.3.3.1 Building-Integrated Wind Turbines 196
7.3.4 Production of Electricity: Rule of Thumb 197
7.3.5 Environmental Impacts 197
7.4 Fuel Cells (FC) 198
7.4.1 Types of Fuel Cells 199
References 200
8 Space Heating of nZEB 201
Abstract 201
8.1 Heat Load of the Building 201
8.1.1 Rule of Thumb 203
8.1.2 Steady State Heat Load 203
8.1.3 Heat Load Determination by Dynamic Simulations 206
8.2 Central Space Heating Systems 208
8.2.1 Comparative Advantages and Disadvantages of Hydronic and Hot Air Space Heating Systems 208
8.2.1.1 Relation Between Flow Rate and Temperature of Heat Transfer Fluid 208
8.2.2 Sub-systems of Space Heating System 211
8.2.3 Basic Elements of Space Heating System 213
8.3 Heat Storage 213
8.4 Distribution Systems 216
8.4.1 Hydronic Systems 217
8.5 End Heat Exchangers/Heat Emitters 220
8.5.1 Radiators 220
8.5.2 Convectors and Fan-Coils 222
8.5.3 Active Beams 224
8.5.4 Floor and Ceiling Radiant Heat Emitters 225
8.5.5 Thermally Activated Building Structures 228
8.5.6 Other Applications of Floor Heating 229
8.6 Control of Space Heating Systems 230
8.7 Energy Needs and Delivered Energy for Space Heating 233
8.8 Principles of Rational Use of Energy for Space Heating 238
References 240
9 Space Cooling of nZEB 241
Abstract 241
9.1 Cooling Load of Buildings 242
9.1.1 Rule of Thumb 242
9.1.2 Steady State Cooling Load 242
9.1.3 Cooling Load Determination by Dynamic Simulations 248
9.2 Techniques for Cooling of the Buildings 248
9.3 Mechanical Cooling of nZEB 250
9.4 Mechanical Space Cooling Systems for nZEB 256
9.4.1 Direct Evaporation (DX) Cooling Systems 256
9.4.2 Chilled Water Space Cooling Systems 257
9.4.2.1 Major Components of Chilled Water Space Cooling Systems 259
Chillers 259
Compressors 260
Cooling Towers 261
Cold Storage 262
Chilled Water Distribution Pipe Network 264
End Heat Exchangers 264
Control of Chilled Water Space Cooling Systems 264
9.5 Environmental Impacts of Space Cooling 265
9.6 Energy Needs and Delivered Energy for Space Cooling 265
9.7 Principles of Rational Use of Energy for Space Cooling 268
9.7.1 Architecture Design 268
9.7.1.1 Reducing the Solar Gains Through Transparent Envelope Structures 268
9.7.1.2 Reducing the Solar Heat Gains Though Opaque Structures 269
9.7.1.3 Greening of Building Structures 270
9.7.2 Natural Cooling and Free Cooling of the Buildings 272
9.7.3 Free Cooling 272
9.7.4 Solar Cooling 274
9.7.5 Other Measures for Increasing Energy Efficiency of Space Cooling Systems 277
References 278
10 Domestic Hot Water Heating in nZEB 279
Abstract 279
10.1 Demand for DHW 279
10.2 DHW Heating Load 281
10.3 Energy Needs and Delivered Energy for DHW 286
10.4 Principles of Rational Use of Energy for DHW Heating 289
10.4.1 DHW Solar Heating 289
10.4.2 Waste Heat Recovery from Drain-Water 293
10.4.3 Heat Recovery from Utility Sewage Systems 293
10.5 Treatment of DHW for Reliable and Healthy Operation of DHW Heating System 294
10.6 Avoiding the Presence of Harmful Microorganisms in Domestic Hot Water 297
References 298
11 Ventilation of nZEB 299
Abstract 299
11.1 Natural Ventilation 300
11.1.1 Advantages and Disadvantages of Natural Ventilation 300
11.1.2 How Natural Ventilation Works 301
11.1.3 Determination of Ventilation Air Flow Rate in Case of Natural Ventilation 304
11.1.4 Controlling of Natural Ventilation 308
11.2 Mechanical Ventilation 308
11.2.1 Advantages and Disadvantages of Mechanical Ventilation 308
11.2.2 Mechanical Ventilation Systems 310
11.2.3 Types of Heat Recovery Units (HRU) in Air Handling Units (AHU) 311
11.2.3.1 Temperature Efficiency and Enthalpy Efficiency of Heat Recovery 311
11.2.3.2 Cross-Flow HRU 312
11.2.3.3 Counter-Flow HRU 312
11.2.3.4 Rotary Wheel HRU 314
11.2.3.5 Flip-Flop HRU 315
11.2.3.6 Indirect HRU 316
11.2.4 Fans 317
11.2.5 Filters in AHU 318
11.2.6 Design of Mechanical Systems with Balanced Ventilation and Heat Recovery 319
11.2.6.1 Centralized Ventilation Systems 319
11.2.6.2 Design of Distribution Duct System 320
11.2.6.3 Decentralized Ventilation Systems 322
11.3 Energy Efficiency Indicators of Mechanical Ventilation Systems with HRU 325
11.3.1 Energy Needs and Delivered Energy for Mechanical Ventilation 329
11.4 Techniques for Improving Energy Efficiency of Ventilation 330
11.4.1 Increasing Heat Recovery Efficiency by Ground Heat Exchanger (GHX) 330
11.4.2 Increasing Energy Efficiency of Buildings with Passive Cooling with Night-Time Natural Ventilation 333
11.4.3 Increasing Energy Efficiency of Buildings with Integration of Building Service Systems 334
References 336
12 Energy Efficient Lighting of nZEB 337
Abstract 337
12.1 Light 337
12.2 Visual Comfort 339
12.3 Sources of Light 339
12.3.1 Daylight 339
12.3.2 The Luminance of the Clear Sky 342
12.3.3 The Luminance of the Overcast Sky and the CIE Overcast Sky 343
12.3.4 Luminous Efficacy of the Direct and the Diffuse Solar Radiation 344
12.3.5 Availability of Daylight 345
12.4 Artificial Sources of Light 345
12.5 Requirements and Criteria of Visual Comfort 348
12.5.1 Illuminance 348
12.5.2 Daylight Factor 349
12.6 Principles of Rational Use of Energy for Lighting 351
12.6.1 Energy Needs and Delivered Energy for Lighting of nZEB 352
References 357
13 Energy Labelling of Buildings 359
Abstract 359
13.1 Energy Performance Certificates of Buildings 360
13.1.1 Calculated Energy Performance Certificate of Building (cEPC) 361
13.1.2 Measured Energy Performance Certificate (mEPC) 363
Reference 366
14 Environmental Labelling of Buildings 367
Abstract 367
14.1 Sustainable Development and Environmental Impacts of Buildings 367
14.2 Ecodesign and Energy Labelling of Energy Related Products 369
14.3 Environmental Labels 371
14.4 Environment Product Declaration—EPD 374
14.4.1 Single Issue Type III Environmental Declarations 376
14.5 Life Cycle Impact Assessment (LCIA) 378
14.5.1 Classification, Characterization, Normalization, and Weighting in LCIA Methodologies 379
14.6 Environmental Impact Assessment of Buildings 389
14.6.1 BREEAM 390
14.6.2 LEED 391
14.6.2.1 Rating and Certificates 393
14.6.3 DGNB 394
14.6.3.1 Rating and Certificates 395
14.6.4 Level(s) 397
References 397

Erscheint lt. Verlag 28.1.2019
Reihe/Serie Springer Tracts in Civil Engineering
Zusatzinfo XV, 388 p. 479 illus., 341 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Schlagworte Building Physics • Building Service Technology • Domestic Hot Water Heating • Energy Efficient Lighting • EPBD • Heat Transfer in Building Constructions • Indoor Thermal Comfort • nZEB • sustainable development • Wind Turbines
ISBN-10 3-030-02822-4 / 3030028224
ISBN-13 978-3-030-02822-0 / 9783030028220
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 32,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
49,99