Simulation and Experiments of Material-Oriented Ultra-Precision Machining -

Simulation and Experiments of Material-Oriented Ultra-Precision Machining (eBook)

eBook Download: PDF
2018 | 1. Auflage
VI, 310 Seiten
Springer Singapore (Verlag)
978-981-13-3335-4 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Ultra-precision machining is a promising solution for achieving excellent machined surface quality and sophisticated micro/nano-structures that influence the applications of components and devices. Further, given the ultrathin layer of material removed, it is a highly coupled process between cutting tool and material. 
In this book, scientists in the fields of mechanical engineering and materials science from China, Ukraine, Japan, Singapore present their latest research findings regarding the simulation and experiment of material-oriented ultra-precision machining. Covering various machining methods (cutting, grinding, polishing, ion beam and laser machining) and materials (metal, semiconductor and hard-brittle ceramics), it mainly focuses on the evaluation of the fundamental mechanisms and their implementation in processing optimization for different materials. It is of significant theoretical and practical value for guiding the fabrication of ultra-smooth and functional surfaces using ultra-precision machining.



Editor: Dr. Junjie Zhang currently is a full-position Professor in Center for Precision Engineering, Harbin Institute of Technology, China. His current research interests are focused on fundamental of ultra-precision machining, design and fabrication of funcational micro/nanostructures, nano-scale friction and wear of nano-materials, computational materials science, etc. He was awarded the Second Class Award in Research Achievements (Science and Technology), Ministry of Education, China, 2016, Outstanding Young Scholar of Harbin Institute of Technology in 2016, Merit award of 2012 Hiwin Doctoral Dissertation Award, Senior membership of the Chinese Mechanical Engineering Society. 

Editor: Dr. Bing Guo currently is a full-position associate professor in Center for Precision Engineering, Harbin Institute of Technology, China. His current research interests are focused on ultra-precision grinding technology, design and fabrication of novel grinding tool, laser micro-machining, etc. He published more than 70 academic papers, and received ten patents. He was awarded the first Class Award in Research Achievements (Science and Technology), Heilongjiang. Province, China, 2017.

Editor: Dr. Jianguo Zhang obtained his BSc and MS degrees in Mechanical Engineering from Harbin Institute of Technology in China in 2008 and 2010, respectively. With the support of the China Scholarship Council, he pursued his graduate studies at the Department of Mechanical Science and Engineering, Nagoya University, Japan. He completed his PhD degree at Nagoya University in 2014 with a thesis on 'Micro/Nano Machining of Steel and Tungsten Carbide Utilizing Elliptical Vibration Cutting Technology.' He subsequently became an Assistant Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics in China, prior to joining Nagoya University as a designated Assistant Professor at the Department of Aerospace Engineering in 2017. His research interests include elliptical vibration cutting technology and the precise fabrication of functional micro/nano-structures on difficult-to-cut materials. In recognition of his practical research on the high-accuracy amplitude control sculpturing method in elliptical vibration cutting, he won the Japan Society for Precision Engineering's Young Researcher Award in 2015.



Ultra-precision machining is a promising solution for achieving excellent machined surface quality and sophisticated micro/nano-structures that influence the applications of components and devices. Further, given the ultrathin layer of material removed, it is a highly coupled process between cutting tool and material. In this book, scientists in the fields of mechanical engineering and materials science from China, Ukraine, Japan, Singapore present their latest research findings regarding the simulation and experiment of material-oriented ultra-precision machining. Covering various machining methods (cutting, grinding, polishing, ion beam and laser machining) and materials (metal, semiconductor and hard-brittle ceramics), it mainly focuses on the evaluation of the fundamental mechanisms and their implementation in processing optimization for different materials. It is of significant theoretical and practical value for guiding the fabrication of ultra-smooth and functional surfaces using ultra-precision machining.

Editor: Dr. Junjie Zhang currently is a full-position Professor in Center for Precision Engineering, Harbin Institute of Technology, China. His current research interests are focused on fundamental of ultra-precision machining, design and fabrication of funcational micro/nanostructures, nano-scale friction and wear of nano-materials, computational materials science, etc. He was awarded the Second Class Award in Research Achievements (Science and Technology), Ministry of Education, China, 2016, Outstanding Young Scholar of Harbin Institute of Technology in 2016, Merit award of 2012 Hiwin Doctoral Dissertation Award, Senior membership of the Chinese Mechanical Engineering Society. Editor: Dr. Bing Guo currently is a full-position associate professor in Center for Precision Engineering, Harbin Institute of Technology, China. His current research interests are focused on ultra-precision grinding technology, design and fabrication of novel grinding tool, laser micro-machining, etc. He published more than 70 academic papers, and received ten patents. He was awarded the first Class Award in Research Achievements (Science and Technology), Heilongjiang. Province, China, 2017.Editor: Dr. Jianguo Zhang obtained his BSc and MS degrees in Mechanical Engineering from Harbin Institute of Technology in China in 2008 and 2010, respectively. With the support of the China Scholarship Council, he pursued his graduate studies at the Department of Mechanical Science and Engineering, Nagoya University, Japan. He completed his PhD degree at Nagoya University in 2014 with a thesis on “Micro/Nano Machining of Steel and Tungsten Carbide Utilizing Elliptical Vibration Cutting Technology.” He subsequently became an Assistant Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics in China, prior to joining Nagoya University as a designated Assistant Professor at the Department of Aerospace Engineering in 2017. His research interests include elliptical vibration cutting technology and the precise fabrication of functional micro/nano-structures on difficult-to-cut materials. In recognition of his practical research on the high-accuracy amplitude control sculpturing method in elliptical vibration cutting, he won the Japan Society for Precision Engineering's Young Researcher Award in 2015.

Contents 6
Fundamentals of Nanometric Cutting of Nanotwinned Copper 8
1 Introduction 8
2 Simulation Method 10
3 Results and Discussion 15
3.1 Nanometric Cutting Mechanisms of NT Cu 15
3.2 Effect of Rake Angle 18
3.3 Effect of Inclination Angle 20
3.4 Effect of TB Spacing 23
3.5 Effect of Grain Size 26
4 Summary 28
References 29
Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys 30
1 Introduction 31
2 Models and Methods 32
2.1 Building Model 32
2.2 Simulation Method 32
3 Plastic Deformation Behavior 34
3.1 Single-Crystal High-Entropy Alloy 34
3.2 Nanocrystalline High-Entropy Alloy 40
4 Machining-Induced Subsurface Damage 42
4.1 Indentation of High-Entropy Alloy 43
4.2 Scratching of High-Entropy Alloy 47
5 Conclusions 54
References 56
Investigation into the Realization of a Single Atomic Layer Removal in Nanoscale Mechanical Machining of Single Crystalline Copper 60
1 Introduction 60
2 Simulation Models and Methods 62
3 Effect of Machining Parameters on Material Removal Process 64
4 Effect of Crystal Orientation and Scratching Direction on the Material Removal Process 72
5 Conclusions 79
References 81
Thermally Assisted Microcutting of Calcium Fluoride Single Crystals 84
1 Optics Fabrication Methods 84
2 Machinability of Calcium Fluoride 85
2.1 Slip Model 85
2.2 Critical Undeformed Chip Thickness 88
2.3 Surface Analysis 91
2.4 Theoretical Modeling 93
3 Analysis of Thermal Assistance 96
3.1 Thermal Effects on Material Properties 96
3.2 Heat-Assisted Machining Simulations 97
4 Thermally Assisted Machining Technology 100
4.1 Current State of Technology 100
4.2 Laser-Assisted Machining 102
4.3 Alternate Heating Methods 104
4.4 Challenges in Hot Machining 105
References 106
Cutting Mechanism and Surface Formation of Ultra-Precision Raster Fly Cutting 110
1 Introduction 111
2 Material Removal Mechanism of UPRFC 114
2.1 Material Removal Mechanism and Cutting Distance Calculation 114
2.2 Chip Formation in UPRFC 116
3 Surface Microwaves in UPRFC 119
4 Tool Wear Features and Their Effects on Surface Integrity 125
4.1 Tool Wear Characteristics and Their Effect on Cutting Chips 125
4.2 Tool Wear Evaluation Using Cutting Chips 126
5 Conclusion 132
References 132
Modeling and Experimental Study of Surfaces Optoelectronic Elements from Crystal Materials in Polishing 135
1 Introduction 135
2 Material Removal Rate and Surface Roughness in Polishing Anisotropic Monocrystalline Materials for Optoelectronics 138
2.1 Removal Rate in Polishing Monocrystalline Materials 138
2.2 Polishing of Crystal Planes with Different Crystallographic Orientation 139
2.3 Polished Surface Roughness of Optoelectronic Components Made of Monocrystalline Materials 146
3 Mechanical Polishing Optoelectronic Components of Crystal Materials 155
4 Surface Roughness of Optoelectronic Components in Mechanical Polishing 161
5 Conclusions 166
References 168
Advanced Applications of Elliptical Vibration Cutting in Micro/Nanomachining of Difficult-to-Cut Materials 172
1 Introduction 173
2 Elliptical Vibration Cutting Process 174
2.1 Principle of Elliptical Vibration Cutting 174
2.2 Development of Elliptical Vibrators 176
3 Tungsten Carbide Machining by Applying EVC 179
3.1 Fundamental Grooving Experiments 180
3.2 Feasibility of Micro/Nanostructure Fabrication on Tungsten Carbide 185
4 Hardened Steel Machining by Applying EVC 188
4.1 Applications of Elliptical Vibration Sculpturing Method in Hardened Steel Machining 189
5 Single-Crystal Silicon Machining by Applying EVC 195
5.1 Fundamental Grooving Experiments with EVC Versus OC 196
5.2 Fabrication of Micro/Nano-dimple Structures 197
6 Conclusion 201
References 202
Ultra-precision Machining of Hard and Brittle Materials with Coarse-Grained Grinding Wheels 206
1 Introduction 206
2 On-site Precise Conditioning of Coarse-Grained Grinding Wheels 207
2.1 ELID-Assisted Conditioning of Coarse-Grained Grinding Wheels 208
2.2 Thermochemical Conditioning of Coarse-Grained Grinding Wheels 211
2.3 Mechanical Conditioning of Coarse-Grained Grinding Wheels 215
3 Ultra-precision Grinding of Hard and Brittle Materials 219
3.1 Ductile Grinding Mechanism of Conditioned Coarse-Grained Wheels 219
3.2 Ground Surface Quality by Conditioned Coarse-Grained Diamond Wheels 221
3.3 Subsurface Damage by Coarse-Grained Diamond Wheels 228
4 Micro-structured Coarse-Grained Grinding Wheels for Improving Ground Subsurface Damage 230
4.1 Laser Micro-structuring on Conditioned Coarse-Grained Diamond Wheel 231
4.2 The Effects of Micro-structured Surface on Grinding Performance 234
5 Conclusions 239
References 240
Technology Precision Machining of Ceramic Balls in the V-Grooves of Variable Curvature 242
1 Introduction 243
2 Machining Precision Balls in the V-Grooves with Variable Curvature 251
3 Mathematical Model of Kinematics of the Process of Precision Processing of Balls 254
4 Determination of the Geometric Parameters of the V-Grooves 262
5 Conclusion 268
References 268
The Contribution of Ion Plasma Sprayed Coating to Performance of Precision Diamond Dressing Tools 270
1 Introduction 270
2 Methodology of Research 272
3 The Application of «Soft» Ion Plasma Sprayed Coatings 272
4 The Application of «Hard» Ion Plasma Sprayed Coatings 273
5 Conclusion 278
References 280
Nitrogen-Vacancy Color Centers in Diamond Fabricated by Ultrafast Laser Nanomachining 282
1 Introduction 282
2 NV Color Center in Diamond 284
2.1 NV Color Center Structure 284
2.2 NV Color Center Electronic Structure 286
2.3 NV Color Center Energy Level Structure 287
2.4 Applications of NV Color Center 288
3 Ultrafast Laser Processing NV Color Center in Diamond 292
3.1 Ultrafast Laser Processing Mechanism 292
3.2 Ultrafast Laser Processing Features 294
3.3 Ultrafast Laser Processing NV Color Center 296
3.4 Experimental Configuration and Annealing 299
4 Spectral Characterization of NV Color Center in Diamond 302
4.1 Confocal Fluorescence Scanning 302
4.2 Anti-bunching Detection 303
5 Summary 305
References 307

Erscheint lt. Verlag 31.12.2018
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Schlagworte Ceramic Ball • Diamond Cutting • Diamond Dressing Tool • Diamond micro-sharpening • Elliptical Vibration Cutting • Hard-Brittle Material • Ion beam • laser machining • Material-Oriented Manufacturing • molecular dynamics • Thermally assisted micro-cutting • Ultra-Precision Machining • Ultra-Smooth Surface
ISBN-10 981-13-3335-1 / 9811333351
ISBN-13 978-981-13-3335-4 / 9789811333354
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99