Industrial Sensors and Controls in Communication Networks (eBook)
XVI, 285 Seiten
Springer International Publishing (Verlag)
978-3-030-04927-0 (ISBN)
This informative text/reference presents a detailed review of the state of the art in industrial sensor and control networks. The book examines a broad range of applications, along with their design objectives and technical challenges. The coverage includes fieldbus technologies, wireless communication technologies, network architectures, and resource management and optimization for industrial networks. Discussions are also provided on industrial communication standards for both wired and wireless technologies, as well as for the Industrial Internet of Things (IIoT).
Topics and features: describes the FlexRay, CAN, and Modbus fieldbus protocols for industrial control networks, as well as the MIL-STD-1553 standard; proposes a dual fieldbus approach, incorporating both CAN and ModBus fieldbus technologies, for a ship engine distributed control system; reviews a range of industrial wireless sensor network (IWSN) applications, from environmental sensing and condition monitoring, to process automation; examines the wireless networking performance, design requirements, and technical limitations of IWSN applications; presents a survey of IWSN commercial solutions and service providers, and summarizes the emerging trends in this area; discusses the latest technologies and open challenges in realizing the vision of the IIoT, highlighting various applications of the IIoT in industrial domains; introduces a logistics paradigm for adopting IIoT technology on the Physical Internet.This unique work will be of great value to all researchers involved in industrial sensor and control networks, wireless networking, and the Internet of Things.
Prof. Dong-Seong Kim is Director of the KIT Convergence Research Institute and ICT Convergence Research Center (ITRC program), supported by the Korean government, at Kumoh National Institute of Technology, Gumi, South Korea. He is a senior member of the IEEE and ACM.
Dr. Hoa Tran-Dang is a research professor, working in the NSL Laboratory, in the Department of ICT Convergence Engineering at Kumoh National Institute of Technology.?
Prof. Dong-Seong Kim is Director of the KIT Convergence Research Institute and ICT Convergence Research Center (ITRC program), supported by the Korean government, at Kumoh National Institute of Technology, Gumi, South Korea. He is a senior member of the IEEE and ACM.Dr. Hoa Tran-Dang is a research professor, working in the NSL Laboratory, in the Department of ICT Convergence Engineering at Kumoh National Institute of Technology.
Preface 6
Acknowledgements 8
Contents 9
Industrial Control Networks 17
1 An Overview on Industrial Control Networks 18
1.1 Introduction 18
1.2 Architecture of Industrial Control Networks 19
1.3 Requirements of Industrial Control Networks 21
1.4 Communication Technologies for Industrial Control Networks 23
1.4.1 Fieldbuses 23
1.4.2 Industrial Ethernet 26
1.5 Trends and Issues 29
1.6 Conclusions 30
References 31
2 FlexRay Protocol: Objectives and Features 32
2.1 Introduction 32
2.2 FlexRay System 33
2.2.1 Level 1—Network Topology 33
2.2.2 Level 2—Interface 33
2.2.3 Level 3—CHI and Protocol Engine 34
2.3 Message Scheduling for FlexRay System 35
2.3.1 FlexRay Static Segment 35
2.3.2 FlexRay Dynamic Segment 38
2.3.3 Comparison with CAN 39
2.4 Verification and Validation 40
2.4.1 Computer Simulation for Model Validation 40
2.4.2 Formal Verification 41
2.5 Software and Hardware 42
2.5.1 Software 42
2.5.2 Hardware 42
2.6 Conclusions 44
References 44
3 Communication Using Controller Area Network Protocol 46
3.1 Introduction 46
3.2 CAN Protocol Overview 48
3.2.1 Physical Layer 48
3.2.2 Message Frame Format 49
3.2.3 Medium Access Technique 51
3.2.4 Error Management 53
3.2.5 Implementation 54
3.3 Main Features 54
3.3.1 Advantages 54
3.3.2 Performances 55
3.3.3 Determinism 55
3.3.4 Dependability 56
3.4 Conclusions 56
References 56
4 Distributed Control System for Ship Engines Using Dual Fieldbus 57
4.1 Introduction 57
4.2 Redundant Distributed Control System 60
4.2.1 Modbus Protocol 63
4.2.2 CAN Protocol 65
4.2.3 Redundancy 67
4.3 Implementation and Experimental Test 70
4.4 Conclusions 76
References 76
5 Implementing Modbus and CAN Bus Protocol Conversion Interface 79
5.1 Introduction 79
5.2 Modbus and CAN Bus 80
5.2.1 Modbus 80
5.2.2 CAN Bus 82
5.3 Conversion Interface Design 84
5.3.1 Hardware Design 84
5.3.2 Software Design 85
5.4 Conclusions 86
References 86
6 MIL-STD-1553 Protocol in High Data Rate Applications 87
6.1 Introduction 87
6.2 Related Works 88
6.3 MIL-STD-1553 Network Protocol Infrastructure 89
6.3.1 MIL-STD-1553 Hardware Elements 89
6.3.2 MIL-STD-1553 Protocol Format 92
6.3.3 Manchester Encoder/Decoder 92
6.3.4 Quality Control Process 93
6.4 Comparative Analysis of High-Speed Data Bus Technologies 95
6.4.1 Traditional MIL-STD-1553 Architecture 95
6.4.2 HyPer-1553TM Data Bus Technology 95
6.4.3 Turbo 1553 Approach 97
6.4.4 Tools for Testing and Simulation 99
6.5 Conclusions and Future Works 100
References 101
7 Research and Design of 1553B Protocol Bus Control Unit 103
7.1 Introduction 103
7.2 1553B Protocol 104
7.2.1 Hardware Characteristics 104
7.2.2 Encoding 104
7.2.3 Word and Message 104
7.2.4 Hierarchical Division 105
7.3 BCU Design 105
7.3.1 Decoding Unit 106
7.3.2 Data Encode Unit 108
7.3.3 Command Words Decode Unit 108
7.3.4 Send Control Unit 108
7.3.5 Status Words Receive Control and Decode Unit 109
7.3.6 Address Decode Unit 109
7.3.7 Send Overtime Detection Unit 109
7.3.8 Error Detection Unit 110
7.3.9 DSP Communication Interface 110
7.4 Logic Emulation 110
7.5 Conclusions 111
References 111
Industrial Wireless Sensor Networks 113
8 An Overview on Wireless Sensor Networks 114
8.1 Introduction 114
8.2 Wireless Sensor Networks 115
8.3 Network Topologies of Wireless Sensor Networks 116
8.4 Applications of WSNs 118
8.4.1 Application Classification 119
8.4.2 Examples of Application Requirements 120
8.5 Characteristic Features of Wireless Sensor Networks 122
8.5.1 Lifetime 122
8.5.2 Flexibility 123
8.5.3 Maintenance 123
8.6 Existing Technologies and Applications 124
8.7 Conclusions 125
References 126
9 Wireless Fieldbus for Industrial Networks 127
9.1 Introduction 127
9.2 Wireless Fieldbus Technology 130
9.2.1 Overview 130
9.2.2 Wireless Fieldbus Systems Proposals 131
9.3 Issues in Wireless Fieldbus Networks 134
9.3.1 Consistency Problems of Fieldbus Technology 135
9.3.2 Problems for Token-Passing Protocols 135
9.3.3 Problems in CSMA Based Protocol 136
9.4 Conclusions 136
References 136
10 Wireless Sensor Networks for Industrial Applications 138
10.1 Introduction 138
10.2 Industrial Wireless Sensor Networks 140
10.2.1 Safety Systems 140
10.2.2 Closed-Loop Regulatory Systems 140
10.2.3 Closed-Loop Supervisory Systems 141
10.2.4 Open Loop Control Systems 141
10.2.5 Alerting Systems 141
10.2.6 Information Gathering Systems 141
10.3 Industrial Standards 141
10.3.1 ZigBee 142
10.3.2 WirelessHART 143
10.3.3 ISA100.11a 145
10.4 Wireless Sensor Networks for Industrial Applications 147
10.4.1 Industrial Mobile Robots 148
10.4.2 Real-Time Inventory Management 148
10.4.3 Process and Equipment Monitoring 149
10.4.4 Environment Monitoring 150
10.5 Conclusions 150
References 151
11 MAC Protocols for Energy-Efficient Wireless Sensor Networks 152
11.1 Introduction 152
11.2 MAC Layer-Related Sensor Network Properties 153
11.2.1 Reasons of Energy Waste 153
11.2.2 Communication Patterns 153
11.2.3 Properties of a Well-Defined MAC Protocol 154
11.3 Multiple-Access Consideration in Sensor Network Properties 154
11.3.1 Network Topologies 155
11.3.2 Time-Division Multiple Access (TDMA) 157
11.3.3 Carrier-Sense Multiple Access (CSMA) and ALOHA 158
11.3.4 Frequency-Division Multiple Access (FDMA) 159
11.3.5 Code-Division Multiple Access (CDMA) 159
11.4 Proposed MAC Layer Protocols 160
11.4.1 Sensor-MAC 160
11.4.2 WiseMAC 161
11.4.3 Traffic-Adaptive MAC Protocol 163
11.4.4 Sift 164
11.4.5 DMAC 164
11.4.6 Timeout-MAC/Dynamic Sensor-MAC 165
11.4.7 Integration of MAC with Other Layers 166
11.5 Open Issues and Conclusion 167
References 169
12 Cooperative Multi-channel Access for Industrial Wireless Networks Based 802.11 Standard 171
12.1 Introduction 171
12.2 Throughput Enhancement 172
12.2.1 CAMMAC-802.11 172
12.2.2 Using Directional Antennas 174
12.2.3 Negotiation-Based Throughput Maximization Algorithm 175
12.3 Access Delay 177
12.4 Mitigating the Impact of Inter-node Interference 179
12.5 Conclusions 181
References 182
13 802.11 Medium Access Control DCF and PCF: Performance Comparison 183
13.1 Introduction 183
13.2 IEEE 802.11 Media Access Protocols 184
13.2.1 Distributed Coordinate Function (DCF) 185
13.2.2 Point Coordinate Function (PCF) 186
13.3 Performance Comparison 187
13.4 Conclusions 188
References 189
14 An Overview of Ultra-Wideband Technology and Its Applications 190
14.1 Introduction 190
14.2 History and Background 191
14.3 UWB Concepts 192
14.3.1 High Data Rate 193
14.3.2 Low Power Consumption 194
14.3.3 Interference Immunity 194
14.3.4 High Security 194
14.3.5 Reasonable Range 194
14.3.6 Large Channel Capacity 194
14.3.7 Low Complexity, Low Cost 195
14.3.8 Resistance to Jamming 195
14.3.9 Scalability 195
14.4 UWB Technologies 196
14.4.1 Impulse Radio 196
14.4.2 Multiband OFDM 196
14.4.3 Comparison of UWB Technologies 198
14.5 Technologies and Standards 198
14.5.1 Bluetooth 198
14.5.2 UWB 199
14.5.3 UWB Standards 200
14.5.4 Marketplace and Vendor Strategies 202
14.6 UWB Applications 202
14.6.1 Communications 203
14.6.2 Radars/Sensors 204
14.7 Conclusions 204
References 205
15 Ultra-Wideband Technology for Military Applications 206
15.1 Introduction 206
15.2 Technical Overview of Ultra-Wideband Systems 207
15.3 Ultra-Wideband Technology for Military Applications 208
15.4 Conclusions 212
References 213
Industrial Internet of Things 214
16 An Overview on Industrial Internet of Things 215
16.1 Introduction 215
16.2 Architecture of IIoT System 215
16.3 Key Enabling Technologies for IIoT 218
16.3.1 Identification Technology 218
16.3.2 Sensor 219
16.3.3 Communication Technology 219
16.3.4 IIoT Data Management 220
16.3.5 Cloud Computing 220
16.4 Major Application of IIoT 221
16.4.1 Heath Care 221
16.4.2 Logistics and Supply Chain 221
16.4.3 Smart Cities 221
16.5 Conclusions 223
References 223
17 Energy-Aware Real-Time Routing for Large-Scale Industrial Internet of Things 225
17.1 Introduction 225
17.2 Related Works 228
17.3 System Model 230
17.3.1 Network Topology 230
17.3.2 Variable Definition 231
17.3.3 Energy Model 231
17.4 Energy-Aware Real-Time Routing Scheme (ERRS) 233
17.4.1 Clustering Scheme 233
17.4.2 Routing Scheme 236
17.5 Performance Evaluation 238
17.5.1 IEEE 802.15.4a CSMA/CA Scheme for IIoT 238
17.5.2 Simulation Model 239
17.5.3 Simulation Results 240
17.6 Conclusions 245
References 245
18 3D Perception Framework for Stacked Container Layout in the Physical Internet 248
18.1 Introduction 248
18.2 Literature Review 250
18.3 Problem and Methodology 251
18.3.1 Problem Definition and Proposed Approach 251
18.3.2 Methodology and Assumptions 253
18.4 Mathematical Formulation of the CSP Problem 256
18.4.1 Parameters and Variables 256
18.4.2 Formulation 257
18.5 Application and Results 259
18.5.1 Experimental Setup 259
18.5.2 Results and Discussions 260
18.6 Conclusion and Future Works 263
References 265
19 An Information Framework of Internet of Things Services for Physical Internet 266
19.1 Introduction 266
19.2 IOT Infrastructure for Physical Internet 270
19.2.1 ?-Containers 270
19.2.2 ?-Movers 273
19.2.3 ?-Nodes 274
19.2.4 Active Distributed PIMS for ?-Nodes 275
19.3 Service-Oriented Architecture for the IOT 279
19.3.1 Physical Layer 280
19.3.2 Network Layer 281
19.3.3 Service Layer 281
19.3.4 Interface Layer 282
19.4 Management of Composite ?-Containers: A Case Study 282
19.4.1 Architecture 283
19.4.2 An Information Flow Framework to Retrieve 3D Layouts 285
19.4.3 Value-Added Services Enabled by Retrieved 3D Layouts 286
19.5 Conclusion and Future Works 286
References 287
Index 289
Erscheint lt. Verlag | 11.12.2018 |
---|---|
Reihe/Serie | Computer Communications and Networks | Computer Communications and Networks |
Zusatzinfo | XVI, 285 p. 131 illus., 90 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Technik ► Nachrichtentechnik | |
Schlagworte | Cloud Computing • Computer Communication • Control • internet of things • Networks • sensors • wireless networks |
ISBN-10 | 3-030-04927-2 / 3030049272 |
ISBN-13 | 978-3-030-04927-0 / 9783030049270 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich