Hybrid Massive MIMO Precoding in Cloud-RAN (eBook)

, (Autoren)

eBook Download: PDF
2018 | 1st ed. 2019
XVI, 149 Seiten
Springer International Publishing (Verlag)
978-3-030-02158-0 (ISBN)

Lese- und Medienproben

Hybrid Massive MIMO Precoding in Cloud-RAN - Tho Le-Ngoc, Ruikai Mai
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the design and optimization of hybrid RF-baseband precoding for massive multiple-input multiple-output (MIMO)-enabled cloud radio access networks (RANs), where use cases such as millimeter-wave wireless backhauling, fully-loaded cellular networks are of interest. The suitability and practical implementation of the proposed precoding solutions for the Cloud RAN architecture are also discussed.

Novel techniques are examined for RF precoding optimization in combination with nonlinear precoding at baseband, and the superiority of joint RF-baseband design is verified. Moreover, the efficacy of hybrid RF-baseband precoding to combat intercell interference in a multi-cell environment with universal frequency reuse is investigated, which is concluded to be a promising enabler for the dense deployment of base stations.

 This book mainly targets researchers and engineers interested in the challenges, optimization, and implementation of massive MIMO precoding in 5G Cloud RAN. Graduate students in electrical engineering and computer science interested in the application of mathematical optimization to model and solve precoding problems in massive MIMO cellular systems will also be interested in this book.


Preface 6
Contents 8
List of Acronyms 11
List of Symbols 13
List of Notations 14
1 Introduction 16
1.1 Scaling up MIMO Communications 16
1.2 Massive MIMO: Architecture, Challenges, and Opportunities 18
1.2.1 Hardware Architecture 18
1.2.2 Challenges and Opportunities 20
1.3 Theme and Organization of Monograph 22
References 25
2 Background 26
2.1 Linear Precoding and Combining for Point-to-Point MIMO 26
2.1.1 Baseband Digital Solutions for Conventional MIMO 26
2.1.2 Progressive Baseband Digital Solutions for Conventional MIMO ARQ 27
2.1.3 Hybrid RF-Baseband Solutions for Massive MIMO 29
2.2 Multi-User MIMO Precoding 33
2.2.1 Precoding for Conventional MIMO: From Linear to Nonlinear 33
2.2.2 Hybrid RF-Baseband Solutions for Massive MIMO 36
2.3 Summary 39
References 40
3 Hybrid Precoding and Combining for Massive MIMO Wireless Backhauling 44
3.1 Introduction 44
3.2 System Model and Problem Statement 45
3.3 Joint Nonuniform-Modulus RF Tx-Rx Design 52
3.4 RF Phase-Shifting Design by Matrix Reconstruction 55
3.4.1 Magnitude LS Formulation 55
3.4.2 AJD-Based Solution 58
3.5 Illustrative Results and Discussions 60
3.5.1 Simulation Setup 60
3.5.2 Effect of Limited RF Chains 61
3.5.3 Effect of Delay-Outage Constraints 63
3.5.4 Effect of Angle Spread 64
3.5.5 Computational Complexity 65
3.6 Summary 66
Appendix 1: Proof of Theorem 3.1 67
Appendix 2: Proof of Corollary 3.1 68
Appendix 3: Proof of Theorem 3.2 69
Appendix 4: Proof of Theorem 3.3 70
References 71
4 Hybrid Precoding/Combining for Massive MIMOwith Hybrid ARQ 73
4.1 Introduction 73
4.2 System Model and Problem Statement 74
4.3 Progressive Hybrid Precoding Design 78
4.4 Progressive Hybrid Combining Design 81
4.5 Illustrative Results and Discussions 83
4.5.1 Small M 84
4.5.2 Large M 85
4.5.3 Increasing Number of RF Chains 86
4.5.4 Impact of Angle Spread 87
4.5.5 Quantization of RF Precoder/Combiner 88
4.5.6 MSE 89
4.5.7 Complexity 90
4.6 Summary 90
Appendix 1: Proof of Theorem 4.1 91
References 94
5 Nonlinear Hybrid Precoding for Massive MIMO with Fractional Frequency Reuse 95
5.1 Introduction 95
5.2 System Model and Problem Statement 97
5.3 Joint Hybrid MMSE-VP Precoding 100
5.3.1 MSE-Based Problem Formulation 100
5.3.2 Statistical CSI-Based RF Precoding Design 102
5.3.2.1 Single-Cluster Transmission 102
5.3.2.2 Multi-Cluster Transmission 102
5.3.3 Statistical CSI-Based RF Phase-Shifting Design 106
5.4 Cluster-Wise Hybrid MMSE-VP Precoding 109
5.4.1 MSE-Based Problem Formulation 109
5.4.2 Modified MSE-Based RF Precoding Design 111
5.4.3 Statistical CSI-Based RF Phase-Shifting Design 113
5.5 Illustrative Results and Discussions 116
5.5.1 Simulation Setup 116
5.5.2 Single-Cluster Scenario 117
5.5.3 Multi-Cluster Scenario 118
5.6 Summary 121
Appendix 1: Proof of Theorem 5.1 122
Appendix 2: Proof of Lemma 5.1 123
Appendix 3: Proof of Theorem 5.2 123
Appendix 4: Derivation of Riemannian Gradient and Riemannian Hessian 124
Joint Hybrid MMSE-VP Precoding 124
Cluster-Wise Hybrid MMSE-VP Precoding 125
Appendix 5: Proof of Proposition 5.1 126
Appendix 6: Proof of Lemma 5.2 and Lemma 5.3 127
References 127
6 Nonlinear Hybrid Precoding for Massive MIMO with Universal Frequency Reuse 129
6.1 Introduction 129
6.2 System Model and Problem Statement 132
6.3 Hybrid Precoder Design with Centralized MMSE-VP 135
6.3.1 Robust Centralized Baseband Precoding 135
6.3.2 Joint RF-Baseband Precoding 140
6.4 Hybrid Precoder Design with Distributed MMSE-VP 145
6.4.1 Approximate BD-Based RF Beamforming 145
6.4.2 Robust Distributed Baseband Precoding 146
6.4.3 Joint RF-Baseband Precoding 147
6.5 Illustrative Results and Discussions 149
6.5.1 Simulation Setup 149
6.5.2 Performance Evaluation 150
6.6 Summary 152
Appendix 1: Proof of Theorem 6.1 154
Appendix 2: Proof of Theorem 6.2 154
References 156
7 Conclusions 158
7.1 Integration of Hybrid Precoding with C-RAN 158
7.2 Future Work 160
References 162

Erscheint lt. Verlag 28.11.2018
Reihe/Serie Wireless Networks
Zusatzinfo XVI, 149 p. 34 illus., 21 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte approximate joint diagonalization • Cayle transformation • channel tracking • coordinated multi-point (CoMP) • discrete monotonic optimization • hybrid RF-baseband precoding/combining • joint RF-baseband optimization • Kalman Filtering • Massive multiple-input multiple-output (MIMO) • matrix manifold optimization • minimum mean square errors • nonlinear precoding • semi-definite programming • two-timescale channel state information • vector perturbation • wireless backhauling
ISBN-10 3-030-02158-0 / 3030021580
ISBN-13 978-3-030-02158-0 / 9783030021580
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99