The Geometry of Ordinary Variational Equations
Seiten
1997
|
1997
Springer Berlin (Verlag)
978-3-540-63832-2 (ISBN)
Springer Berlin (Verlag)
978-3-540-63832-2 (ISBN)
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
Basic geometric tools.- Lagrangean dynamics on fibered manifolds.- Variational Equations.- Hamiltonian systems.- Regular Lagrangean systems.- Singular Lagrangean systems.- Symmetries of Lagrangean systems.- Geometric intergration methods.- Lagrangean systems on ?: R×M"R.
Erscheint lt. Verlag | 27.11.1997 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | CCLXIV, 254 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 346 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik ► Maschinenbau | |
Schlagworte | Calculus • differential equation • Differential Geometry • hamiltonian mechanics • Hamilton-Jacobi theory • higher-order variational equations • Lagrangian mechanics • manifold • regularity • Variationsrechnung |
ISBN-10 | 3-540-63832-6 / 3540638326 |
ISBN-13 | 978-3-540-63832-2 / 9783540638322 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €