Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
Springer International Publishing (Verlag)
978-3-030-01363-9 (ISBN)
The 9 full papers presented at CVII-STENT 2017 and the 12 full papers presented at LABELS 2017 were carefully reviewed and selected. The CVII-STENT papers feature the state of the art in imaging, treatment, and computer-assisted intervention in the field of endovascular interventions. The LABELS papers present a variety of approaches for dealing with few labels, from transfer learning to crowdsourcing.
Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration.- Automated quantification of blood flow velocity from time-resolved CT angiography.- Multiple device segmentation for fluoroscopic imaging using multi-task learning.- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors.- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network.- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts.- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images.- Towards Automatic Measurement of Type B Aortic Dissection Parameters.- Prediction of FFR from IVUS Images using Machine Learning.- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks.- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images.- Crowd disagreement about medical images is informative.- Imperfect Segmentation Labels: How Much Do They Matter?.- Crowdsourcing annotation of surgical instruments in videos of cataract surgery.- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling.- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans.- Capsule Networks against Medical Imaging Data Challenges.- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images.- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos.- Radiology Objects in COntext (ROCO).- Improving out-of-sample prediction of quality of MRIQC.
Erscheinungsdatum | 18.10.2018 |
---|---|
Reihe/Serie | Image Processing, Computer Vision, Pattern Recognition, and Graphics | Lecture Notes in Computer Science |
Zusatzinfo | XVII, 202 p. 111 illus., 65 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 343 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Informatik ► Weitere Themen ► Hardware | |
Technik | |
Schlagworte | Applications • Artificial Intelligence • automatic segmentations • classification • Computer Science • conference proceedings • Image Analysis • Image Processing • image reconstruction • Image Segmentation • Informatics • Learning Algorithms • Medical Images • Medical Imaging • Neural networks • pattern recognition • Research • segmentation methods • Semantics • Support Vector Machines (SVM) |
ISBN-10 | 3-030-01363-4 / 3030013634 |
ISBN-13 | 978-3-030-01363-9 / 9783030013639 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich