Nanomaterials for Sustainable Energy -

Nanomaterials for Sustainable Energy

Quan Li (Herausgeber)

Buch | Softcover
XVII, 590 Seiten
2018 | 1. Softcover reprint of the original 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-81178-9 (ISBN)
160,49 inkl. MwSt

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors is covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications arecompiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

Quan Li, Ph.D., is Director of Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research projects funded by US Air Force Research Laboratory, US Air Force Office of Scientific Research, US Army Research Office, US Department of Defense Multidisciplinary University Research Initiative, US National Science Foundation, US Department of Energy, US National Aeronautics and Space Administration, Ohio Third Frontier, Samsung Electronics etc. He received his Ph.D. in Organic Chemistry from Chinese Academy of Sciences (CAS) in Shanghai, where he was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry in February of 1998. He was a recipient of CAS One-Hundred Talents Award (BeiRenJiHua) in 1999. He was Alexander von Humboldt Fellow in Germany. He has also won Kent State University Outstanding Research and Scholarship Award. Li has edited three Wiley books and three Springer books in the past five years, and is the invited author of the entry "Liquid Crystals" for Kirk-Othmer Encyclopedia and "Gold Nanorods" for Encyclopedia of Surface and Colloid Science.

From the Contents: Thermoelectric Nanomaterials for Thermal Energy Conversion.- Electrochromic Nanomaterials for Energy Efficient Windows.- Piezoelectric Nanomaterials for Mechanical Energy Harvesting.- Nanomaterials for Solar Cells.

Erscheinungsdatum
Reihe/Serie NanoScience and Technology
Zusatzinfo XVII, 590 p. 292 illus., 36 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 9066 g
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Artificial Photosynthesis • Carbon Dioxide Capture • Conjugated polymer solar cells • hydrogen storage • Materials for Sustainable Energy • Mesoporous nanomaterials • Nanomaterials for energy • Nanomaterials for fuel cells • Piezoelectric nanomaterials • Quantum dot solar cells
ISBN-10 3-319-81178-9 / 3319811789
ISBN-13 978-3-319-81178-9 / 9783319811789
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN; ZVEH; Burkhard Schulze

Buch | Softcover (2023)
Beuth (Verlag)
86,00
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00