On the delayed failure of geotechnical structures in low permeability ground -  Roberto Schürch

On the delayed failure of geotechnical structures in low permeability ground (eBook)

eBook Download: PDF
2018 | 1. Auflage
217 Seiten
vdf Hochschulverlag AG
978-3-7281-3857-6 (ISBN)
Systemvoraussetzungen
62,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This thesis investigates the problem of time-dependent stability of geotechnical structures (such as trenches or tunnels) in medium- to low-permeability water-bearing grounds, typically clayey or silty soils. The peculiarity of these soils is that they respond to excavation with a delay. The time-dependency can be traced back to the swelling process triggered by the dissipation of the excavation-induced negative excess pore pressures. Unstable conditions may necessitate improvement or reinforcement of the ground or the application of a support (e.g. by compressed air or pressurized bentonite slurry in the case of tunnel face). As such measures may present economical and operational disadvantages, the question of whether and for how long the excavation can remain stable without support is of great practical relevance. The stand-up time (time lapsing between end of the excavation and the occurrence of failure), and thus the feasibility of refraining from ground reinforcement, improvement or support, depends essentially on soil strength and permeability. The goal of the thesis is to develop a computational method that allows the estimation of the stand-up time, and thus improve construction safety and economy. The main objectives towards this goal are: - analysis of the mechanism of delayed failure by means of fully coupled hydraulic-mechanical continuum-mechanical simulations, investigation into the role of the constitutive behaviour of the ground (particularly that of plastic dilation), and - development of a practical method of dealing with the numerical problem of mesh-sensitivity which occurs due to the localization of deformations when assuming non-associated plasticflow in any geotechnical structure at failure; - planning and performing experiments and validation of the computational method and assumptions; systematic investigation of the stand-up time of the tunnel face and working-out of design charts.

On the delayed failure of geotechnical structures in low permeability ground 1
Vorwort 5
Acknowledgments 6
Abstract 7
Zusammenfassung 9
Table of contents 12
1. Introduction 14
1.1 Problem definition 14
1.1.1 Delayed failure 14
1.1.2 Stand-up time 16
1.2 Current state of research 18
1.2.1 Numerical studies 18
1.2.2 Field tests and physical modelling 20
1.3 Objectives and structure of the thesis 20
1.4 Computational method 22
2. Structural softening 24
2.1 Introduction 24
2.2 Reduction factor 26
3. Manifestations of delayed failure 30
3.1 Introduction 30
3.2 Problem setup and computational model 31
3.3 Mohr-Coulomb material 31
3.3.1 Stability under undrained or drained conditions 31
3.3.2 Coupled analysis for dilatant plastic behaviour 36
3.3.2.1 Displacement rate 36
3.3.2.2 Pore pressure, stress and strain development 39
3.3.2.3 Comments on the steady state 39
3.3.2.4 On the possible effect of an increase in permeability 40
3.3.2.5 Estimating stand-up time 42
3.3.3 Coupled analysis for isochoric plastic behaviour 43
3.3.3.1 Displacement rate 43
3.3.3.2 Development of pore pressures, strains and stresses 45
3.3.3.3 Reason of numerical instability 47
3.3.3.4 Estimating stand-up time 47
3.3.3.5 Influence of the loading on the bottom boundary 47
3.4 Coupled analysis for Modified Cam Clay material 49
3.4.1 Assumptions 49
3.4.2 Development of pore pressures, strains and stresses 51
3.4.3 Effect of OCR on stand-up time 56
3.5 Conclusions 57
4. Mesh dependency 58
4.1 Introduction 58
4.2 Underwater vertical cut 59
4.2.1 Inclination of the sliding surface 60
4.2.2 Critical strength parameters 62
4.2.3 Stand-up time 63
4.3 Biaxial problem 65
4.3.1 Problem definition 65
4.3.2 Analytical solution for the estimation of the stand-up time 66
4.3.2.1 Derivation 66
4.3.2.2 Upper and lower limit of the stand-up time 69
4.3.3 Numerical estimation of the stand-up time 70
4.3.3.1 Computational model 70
4.3.3.2 Shear band propagation mechanism 70
4.3.3.2.1 Elastic behaviour at early excess pore pressure dissipation stage 70
4.3.3.2.2 Onset of yielding 75
4.3.3.2.3 The numerical identification of structural softening 77
4.3.3.2.4 The stress re-distribution process 79
4.3.3.3 Stand-up time 81
4.3.3.4 Influence of the element size on the stand-up time 82
4.3.3.4.1 Numerical results 82
4.3.3.4.2 Interpretation 87
4.3.3.4.3 The effect of the discretization on the propagation speed 87
4.3.3.4.4 Stand-up time estimation for very thin shear bands 91
4.4 Conclusions 92
5. Uniaxial loading tests 93
5.1 Introduction 93
5.2 Experimental study 94
5.2.1 Material and methods 94
5.2.1.1 Specimen preparation 94
5.2.1.2 Installation of pore pressure transducers 94
5.2.1.3 Testing device and procedure 100
5.2.1.4 Material parameters 102
5.2.2 Results 106
5.2.2.1 Pore pressure evolution during the pre-test phase 106
5.2.2.2 Underwater tests 108
5.2.2.3 Tests executed under water vapour 111
5.3 Numerical study 113
5.3.1 Computational model 113
5.3.2 Computational steps 113
5.3.2.1 MCC model 113
5.3.2.2 MC model 114
5.3.3 MCC model results 114
5.3.3.1 Simulation results for the underwater test 114
5.3.3.2 Simulation results for the test under water vapour 120
5.3.4 Underwater test interpretation by MC model 125
5.4 Conclusions 127
6. Centrifuge tests 129
6.1 Introduction 129
6.2 Centrifuge modelling 131
6.2.1 Material and methods 131
6.2.1.1 Scaling laws and model dimensions 131
6.2.1.2 Model preparation 132
6.2.1.3 Instrumentation 133
6.2.1.4 Test procedure 134
6.2.1.5 Determination of the material parameters 135
6.2.1.5.1 Theoretical estimation of the effective cohesion 136
6.2.1.5.2 Cohesion estimation based upon the results of T-bar penetrometer tests 139
6.2.1.5.3 Selection of the effective cohesion to be used in the MC model 142
6.2.2 Experimental results 142
6.3 Limit equilibrium analysis 146
6.4 Numerical modelling 148
6.4.1 Computational model 148
6.4.2 Simulation procedure 149
6.4.2.1 MC model 149
6.4.2.2 MCC model 150
6.4.3 Results 151
6.4.3.1 MC model 151
6.4.3.2 MCC model 154
6.5 Mesh dependency 159
6.6 Conclusions 161
7. Stand-up time of tunnel face 162
7.1 Introduction 162
7.2 Computational model 162
7.3 Undrained and drained tunnel face stability 165
7.3.1 Numerical investigation 165
7.3.2 Comparison with analytical solutions 168
7.4 Tunnel face stability under transient conditions 169
7.5 On the transient tensile failure of the ground 173
7.6 On some factors influencing stand-up time 176
7.6.1 Cohesion 176
7.6.2 Friction angle 178
7.6.3 In situ horizontal effective stress 180
7.6.4 Depth of cover 182
7.7 Design diagrams 184
7.8 Application example 191
7.9 The influence of the support pressure on the stand-up time 192
7.10 Critical advance rate 193
7.11 Conclusions 196
8. Conclusions and outlook 197
Appendix A. Publications from the present thesis 199
Appendix B. Water retention curve 200
Appendix C. List of symbols 204
References 207

Erscheint lt. Verlag 1.5.2018
Reihe/Serie Veröffentlichungen des Instituts für Geotechnik (IGT) der ETH Zürich
Verlagsort Zürich
Sprache englisch
Themenwelt Technik
Schlagworte Geländestabilität • MCC-Modell • MC-Modell • Ortsbruststabilität • Tagbruch • Tunnelausbruch • Tunnelbau • Tunnelvortrieb
ISBN-10 3-7281-3857-6 / 3728138576
ISBN-13 978-3-7281-3857-6 / 9783728138576
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN Media GmbH

eBook Download (2023)
DIN Media GmbH (Verlag)
86,00