On-Surface Synthesis II (eBook)

Proceedings of the International Workshop On-Surface Synthesis, San Sebastián, 27-30 June 2016
eBook Download: PDF
2018 | 1st ed. 2018
VIII, 227 Seiten
Springer International Publishing (Verlag)
978-3-319-75810-7 (ISBN)

Lese- und Medienproben

On-Surface Synthesis II -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

On-surface synthesis is appearing as an extremely promising strategy to create organic nanoarchitectures with atomic precision. Molecular building blocks holding adequate functional groups are dosed onto surfaces that support or even drive their covalent linkage. The surface confinement and the frequent lack of solvents (most commonly being performed under vacuum conditions) create a completely new scenario fully complementary to conventional chemistry. 

In a pedagogical way and based on the most recent developments, this volume presents our current understanding in the field, addressing fundamental reaction mechanisms, synthetic strategies to influence the reactions according to our needs, as well as the ultimate growth and characterization of functional materials.

Verging on chemistry, physics and materials science, the book is aimed at students and researchers interested in nanochemistry, surface science, supramolecular materials and molecular devices.

Chapters 'Mechanistic insights into surface-supported chemical reactions', 'Reactivity on and of Graphene Layers: Scanning Probe Microscopy Reviels' and 'Bottom-up fabrication of atomically precise graphene nanoribbons' of this book are available open access under a CC BY 4.0 license at link.springer.com



Dimas G. de Oteyza performed his PhD studies at the Max-Planck Institute for Metals Research and obtained the degree from the Universidad Autónoma de Madrid in 2007. Thereafter he has worked at the National Institute for Materials Science, at the Donostia International Physics Center (DIPC), at the Molecular Foundry of the Lawrence Berkeley National Laboratory, at the University of California at Berkeley and at the Centro de Física de Materiales. He is currently an Ikerbasque Research Professor at DIPC. The research throughout his career has been mainly devoted to the investigation of physicochemical phenomena in organic materials and organic-inorganic interfaces, including thin film growth, self-assembly, interface electronics and chemical reactions. He has received honors like the Fonda Fasella Award, the Friedrich Wilhelm Bessel Award and an ERC Starting Grant with the objective to study and advance the field of on-surface synthesis. 

Dr. Rogero obtained her PhD degree in 2003 at the Universidad Autónoma de Madrid, receiving the PhD Special Award from the Universidad Autónoma de Madrid as well as the Award from the Royal Academy of Doctors of Spain (2003-2004) for the best thesis in the section of Experimental and Technological Sciences. After this period, she worked at the Department of Chemistry at the Newcastle upon Tyne University and at the Astrobiology Center in Madrid. Since October 2009, she is Tenured Scientist at the Spanish Research Council CSIC, working at the Centro de Física de Materiales  in San Sebastian. Her research expertise is in the field of experimental Surface Science Physics and her main research lines have been always related to the structural and electronic characterization of both purely inorganic as well as organic-inorganic metal-semiconductor (insulator) interfaces.

Dimas G. de Oteyza performed his PhD studies at the Max-Planck Institute for Metals Research and obtained the degree from the Universidad Autónoma de Madrid in 2007. Thereafter he has worked at the National Institute for Materials Science, at the Donostia International Physics Center (DIPC), at the Molecular Foundry of the Lawrence Berkeley National Laboratory, at the University of California at Berkeley and at the Centro de Física de Materiales. He is currently an Ikerbasque Research Professor at DIPC. The research throughout his career has been mainly devoted to the investigation of physicochemical phenomena in organic materials and organic-inorganic interfaces, including thin film growth, self-assembly, interface electronics and chemical reactions. He has received honors like the Fonda Fasella Award, the Friedrich Wilhelm Bessel Award and an ERC Starting Grant with the objective to study and advance the field of on-surface synthesis. Dr. Rogero obtained her PhD degree in 2003 at the Universidad Autónoma de Madrid, receiving the PhD Special Award from the Universidad Autónoma de Madrid as well as the Award from the Royal Academy of Doctors of Spain (2003-2004) for the best thesis in the section of Experimental and Technological Sciences. After this period, she worked at the Department of Chemistry at the Newcastle upon Tyne University and at the Astrobiology Center in Madrid. Since October 2009, she is Tenured Scientist at the Spanish Research Council CSIC, working at the Centro de Física de Materiales  in San Sebastian. Her research expertise is in the field of experimental Surface Science Physics and her main research lines have been always related to the structural and electronic characterization of both purely inorganic as well as organic-inorganic metal-semiconductor (insulator) interfaces.

Preface.- Mechanistic insights into surface-supported chemical reactions.- Kinetic and thermodynamic considerations in on-surface synthesis.- Heat or light? Tools of choice for on-surface synthesis.- Reactivity on and of graphitic substrates at the liquid-solid interface: scanning probe microscopy reveals.- C-H activation as a generic route for on-surface synthesis of complex macromolecules.- Dehydrogenative and dehalogenative homocoupling reactions of C-X groups on metal surfaces.- On-surface Ullmann reaction for the synthesis of macrocycles and polymers.- Bottom-up fabrication of atomically precise graphene nanoribbons.- Aryl-aryl covalent coupling on rutile TiO2 surfaces.- On-surface synthesis of 2D networks: from graphene-like to graphyne-like networks.- Cu- and Pd-catalyzed on-surface coupling reactions.- nc-AFM to Address Long-Standing Chemical Challenges.

Erscheint lt. Verlag 19.3.2018
Reihe/Serie Advances in Atom and Single Molecule Machines
Zusatzinfo VIII, 227 p.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Wirtschaft
Schlagworte catalysis • covalent self-assembly • Design at molecular level • Nanoscience and nanotechnology • on-surface synthesis • On-Surface Ullmann reaction • Physical Chemistry • Reaction mechanisms • supramolecular materials • surface-supported chemistry • surface-supported reactions • surface-supported synthesis
ISBN-10 3-319-75810-1 / 3319758101
ISBN-13 978-3-319-75810-7 / 9783319758107
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald …

eBook Download (2022)
Carl Hanser Fachbuchverlag
69,99