Non-Local Partial Differential Equations for Engineering and Biology (eBook)

Mathematical Modeling and Analysis
eBook Download: PDF
2017 | 1st ed. 2018
XIX, 300 Seiten
Springer International Publishing (Verlag)
978-3-319-67944-0 (ISBN)

Lese- und Medienproben

Non-Local Partial Differential Equations for Engineering and Biology - Nikos I. Kavallaris, Takashi Suzuki
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents new developments  in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena.
This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.

Preface 7
References 13
Acknowledgements 15
Contents 16
Part I Applications in Engineering 19
1 Micro-Electro-Mechanical-Systems (MEMS) 20
1.1 Derivation of the Basic Model and Its Variations 20
1.1.1 The Elastic Problem 21
1.1.2 The Electric Problem 23
1.1.3 An Uncoupled Local Model 24
1.1.4 An Uncoupled Non-local Model 26
1.2 Mathematical Analysis 29
1.2.1 A Non-local Parabolic Problem 29
1.2.2 A Non-local Hyperbolic Problem 64
References 78
2 Ohmic Heating Phenomena 81
2.1 Ohmic Heating of Foods 81
2.1.1 Derivation of the Basic Model and Its Variations 81
2.1.2 Local Existence and Monotonicity 85
2.1.3 Stationary Problem 89
2.1.4 Stability 95
2.1.5 Finite-Time Blow-Up 101
2.2 A Non-local Thermistor Problem 108
2.2.1 Neumann Problem 108
2.2.2 Robin Problem 111
2.2.3 Dirichlet Problem 114
References 122
3 Linear Friction Welding 125
3.1 Derivation of the Model 125
3.2 The Exponential Case 130
3.3 Numerical Results 140
3.3.1 The Soft Material Case 140
3.3.2 The Hard Material Case 142
References 144
4 Resistance Spot Welding 146
4.1 Derivation of the Non-local Model 146
4.2 The Mathematical Problem 151
4.3 The Numerical Scheme 152
4.4 Stability 154
4.5 Error Estimates 158
4.6 Numerical Experiments 165
References 173
Part II Applications in Biology 175
5 Gierer--Meinhardt System 176
5.1 Derivation of the Non-local Model 176
5.2 Mathematical Analysis 181
5.2.1 Global-in-time Existence 181
5.2.2 ODE Type Blow-Up 189
5.2.3 Diffusion Driven Blow-Up 192
5.2.4 Blow-Up Rate and Blow-Up Pattern 202
References 205
6 A Non-local Model Illustrating Replicator Dynamics 207
6.1 Derivation of the Non-local Model 207
6.2 Mathematical Analysis 212
6.2.1 Local Existence and Extendability of Weak Solutions 213
6.2.2 Global Existence Versus Blow-Up 232
References 237
7 A Non-local Model Arising in Chemotaxis 240
7.1 Derivation of the Non-local Model 240
7.2 Mathematical Analysis 242
7.2.1 Preliminaries 242
7.2.2 Blow-Up Results 244
7.3 An Associated Competition-Diffusion System 251
7.4 Miscellanea 257
References 259
8 A Non-local Reaction-Diffusion System Illustrating Cell Dynamics 261
8.1 Derivation of the Non-local Reaction-Diffusion System 261
8.2 Mathematical Analysis 265
8.2.1 Preliminary Results 265
8.2.2 Phase Separation 269
8.2.3 Long-Time Behavior 276
8.2.4 Decay Rate Towards the Steady States 281
References 299
Appendix Appendix 301
A.1 Kirchhoff Equation 301
A.2 Equilibrium and Relaxation States of Point Vortices 302
A.3 Normalized Ricci Flow on Surfaces 305
References 307
Index 309

Erscheint lt. Verlag 28.11.2017
Reihe/Serie Mathematics for Industry
Mathematics for Industry
Zusatzinfo XIX, 300 p. 23 illus., 7 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte Applications of Loktka- Volterra Models • Bio-science Modelling • Blow up analysis for non-local diffusion • Deterministic non-local PDE´s • Models • Nonlocal equations • Non-local PDE's • Partial differential equations
ISBN-10 3-319-67944-9 / 3319679449
ISBN-13 978-3-319-67944-0 / 9783319679440
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48