Mechanics of Composite and Multi-functional Materials, Volume 6 (eBook)
VIII, 221 Seiten
Springer International Publishing (Verlag)
978-3-319-63408-1 (ISBN)
Recycled Constituent Composites
Hybrid Composites
Multifunctional Materials
Fracture & Fatigue of Composites
Novel Developments in Composites
Mechanics of Composites
FM 5
FM 5
Chapter 1: Scrap-Rubber Based Composites Reinforced with Boron and Alumina 8
1.1 Introduction 8
1.2 Experimental Conditions 9
1.2.1 Materials Processing 9
1.2.2 Mechanical Tests and Microstructure of the Compositions 9
1.2.3 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter 10
1.2.4 Nanoindentation to Measure Constituent Properties 10
1.3 Results and Discussions 10
1.3.1 Dynamic Compression (Impact) Testing 10
1.3.2 Wear Testing 11
1.3.3 Nanoindentation 12
1.4 Conclusions 15
References 15
Chapter 2: Characterization of Thermoplastic Matrix Composite Joints for the Development of a Computational Framework 17
2.1 Introduction 17
2.2 Mechanical Characterization of Composite Material 19
2.3 Optical Characterization of Composite Material 22
2.4 Conclusions 24
2.5 Future Work 24
References 25
Chapter 3: Experimental Study of Laser Cutting Process of Titanium Aluminium (Ti-Al) Based Composites Designed Through Combine... 26
3.1 Introduction 26
3.2 Experimental Conditions 27
3.2.1 Manufacturing of Intermetallic Composite: Composition of the Specimens Designed in this Work Was Arranged as Follows 27
3.2.2 Wearing-Scratch Tests 27
3.2.3 Laser Cutting Process and Cutting Parameters 27
3.3 Results and Discussions 28
3.3.1 Microstructural Evaluation of the Intermetallic Composite 28
3.3.2 Evaluation of Surface Wearing by Scratch Test Results 29
3.3.3 Evaluation of the Results of Laser Cutting Process 29
3.3.4 Integrity of Surface After Laser Cutting 33
3.4 Conclusions 35
References 36
Chapter 4: Mechanical Characterization of Epoxy: Scrap Rubber Based Composites Reinforced with Nanoparticles 37
4.1 Introduction 37
4.2 Experimental Conditions 38
4.2.1 Materials Processing 38
4.2.2 Mechanical Behaviours and Microstructural Analyses 39
4.2.3 Creep and Wear Analyses Through Nanoindentation Tests 39
4.2.4 Damage Analysis by Means of Macro Scratch Test 39
4.3 Results and Discussions 40
4.3.1 Microstructure Analyses and Macro Indentation Compression Tests 40
4.3.2 Dynamic Compression (Impact) Testing 41
4.3.3 Creep Testing by Nanoindentation 43
4.3.4 Wear Testing by Nanoindentation 43
4.3.5 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter 43
4.4 Conclusions 46
References 46
Chapter 5: Mechanical Characterization of Epoxy - Scrap Rubber Based Composites Reinforced with Nano Graphene 48
5.1 Introduction 48
5.2 Experimental Conditions 49
5.2.1 Materials Processing 49
5.2.2 Mechanical Tests and Microstructural Analyses 49
5.2.3 Nanoindentation: Creep and Wear Tests 50
5.2.4 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter 51
5.3 Results and Discussion 51
5.3.1 Microstructure Evaluation and Macro Indentation Compression Tests 51
5.3.2 Dynamic Compression (Impact) Testing 51
5.3.3 Creep Testing by Nanoindentation 52
5.3.4 Wear Testing by Nanoindentation 55
5.3.5 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter 55
5.3.6 Bending Testing by Means of three Point Bending 55
5.4 Conclusions 60
References 60
Chapter 6: Mechanical Characterization of Epoxy - Scrap Rubber Based Composites Reinforced with Alumina Fibers 61
6.1 Introduction 61
6.2 Experimental Conditions 62
6.2.1 Materials Processing 62
6.2.2 Mechanical Tests and Microstructural Analyses 62
6.2.3 Nanoindentation: Creep and Wear Tests 63
6.2.4 Damage Analysis by Means of Scratch Test 63
6.3 Results and Discussions 64
6.3.1 Microstructure of the Composites and Macro Indentation Tests 64
6.3.2 Dynamic Compression (Impact) Testing 64
6.3.3 Creep Testing by Nanoindentation 66
6.3.4 Wear Testing by Nanoindentation 67
6.3.5 Damage Analysis by Means of Scratch Test and 3D Optical Roughness Meter 68
6.3.6 Bending Testing by Means of three Point Bending 69
6.3.7 UV Degradation on Specimens 71
6.4 Conclusions 71
References 72
Chapter 7: Scaled Composite I-Beams for Subcomponent Testing of Wind Turbine Blades: An Experimental Study 73
7.1 Introduction 73
7.2 Governing Equations 74
7.3 Design Methodology 76
7.3.1 Experimental Results and Discussion 77
7.4 Conclusion 79
References 79
Chapter 8: Development Analysis of a Stainless Steel Produced by High Energy Milling Using Chips and the Addition of Vanadium ... 81
8.1 Introduction 81
8.2 Experimental 82
8.2.1 Materials 82
8.2.2 Experimental Statistical 82
8.2.3 Experimental Procedure 82
8.3 Results and Discussion 83
8.3.1 Analysis Statistics of the Milling Parameters 83
8.3.2 Microstructural Characterization of the Powder Particles 84
8.3.3 Microstructural Characterization and Density Measurements of Sintered Stainless Steel with Carbide Addition 88
8.4 Conclusion 90
8.5 Acknowledges 90
References 90
Chapter 9: Design of Magnetic Aluminium (A356) Based Composites through Combined 2 Method of Sinter + Forging 3 91
9.1 Introduction 91
9.2 Experimental Conditions 92
9.3 Results and Discussion 93
9.3.1 Microstructural Evaluation of the Composites A356-I and A356-II 93
9.3.2 Static Compression Test Results 95
9.3.3 Impact: Compression Test Results with Split Hopkinson Pressure Bar (SHPB) 96
9.3.4 Wear Resistance by Scratch Test 96
9.3.5 Evaluation of Magnetic Properties for A356-I and A356-II 98
9.3.6 Measurements of Electrical Properties 99
9.4 Conclusion 101
References 101
Chapter 10: Design of Low Composites from Recycled Copper + Aluminium Chips for Tribological Applications 103
10.1 Introduction 103
10.2 Experimental Conditions 104
10.3 Results and Discussion 105
10.3.1 Microstructural Evaluation of the Composite under Different Manufacturing Conditions 105
10.3.2 Static Compression Test Results 106
10.3.3 Dynamic Compression (Impact-Drop-Weight) Testing 107
10.3.4 Wear Resistance by Scratch Test 107
10.3.5 Measurements of Electrical Properties 109
10.4 Conclusion 111
References 111
Chapter 11: Liquid Metal Dispersions for Stretchable Electronics 113
11.1 Introduction 113
11.2 Experimental 113
11.3 Results and Discussion 114
11.4 Conclusions 115
References 115
Chapter 12: Laser Cutting of the TiN +Al2O3 Reinforced Aluminium Matrix Composites Through Semisolid Sintering 116
12.1 Introduction 116
12.2 Experimental Conditions 117
12.2.1 Manufacturing of Composites and Microstructural Evaluation 117
12.2.2 Laser Cutting Process and Cutting Parameters 118
12.3 Results and Discussions 118
12.3.1 Microstructure of (TiN +Al2O3) Reinforced Aluminium Matrix Composites 118
12.3.2 Evaluation of the Results for Laser Cutting Process 119
12.3.2.1 Evolution of Micro-Hardness as a Function of the Laser Cutting Conditions 123
12.3.2.2 Evolution of Surface Roughness as Function of Cutting Conditions 124
12.4 Conclusions 126
References 130
Chapter 13: Optimization of Laser Cutting Parameters for Tailored Behaviour of Scrap (Ti6242 + Ti) Based Composites Through Se... 131
13.1 Introduction 131
13.2 Experimental Conditions 132
13.2.1 Manufacturing of Composites and Microstructural Evaluation 132
13.2.2 Laser Cutting Process and Cutting Parameters 132
13.3 Results and Discussion 133
13.3.1 Microstructure of ((Ti6242 + Pure Ti) Based Composites 133
13.3.2 Evaluation of the Results for Laser Cutting Process 133
13.3.2.1 Evolution of Micro-Hardness as a Function of the Laser Cutting Conditions 139
13.3.2.2 Evolution and Optimization of Surface Roughness Depending on the three Cutting Conditions 140
13.4 Conclusions 142
References 142
Chapter 14: Studying Effect of CO2 Laser Cutting Parameters of Titanium Alloy on Heat Affected Zone and Kerf Width Using the T... 143
14.1 Introduction 143
14.2 Experimental Condition 144
14.3 Results and Discussion 144
14.3.1 HAZ Depth Analysis 144
14.3.2 Kerf Width Analysis 146
14.3.3 Results Analysis Using Taguchi Method 148
14.4 Conclusion 150
References 150
Chapter 15: Fatigue Characterization of In-Situ Self-Healing Dental Composites 151
15.1 Introduction 151
15.2 Methods 152
15.2.1 Materials and Sample Preparation 152
15.2.2 Fatigue Procedure 153
15.3 Results and Discussions 153
15.4 Conclusions 154
References 155
Chapter 16: Effect of Process Induced Stresses on Measurement of FRP Strain Energy Release Rates 156
16.1 Introduction 156
16.2 Material 157
16.3 Experimental Procedure 157
16.3.1 DCB Testing 157
16.3.2 ENF Testing 158
16.4 Results 161
16.4.1 DCB Results 161
16.4.2 ENF Results 163
16.5 Simulation Methodology 165
16.5.1 Analysis Software 165
16.5.2 Element Formulation 165
16.5.3 Material Models 166
16.5.4 Model Geometry 167
16.5.5 Boundary Conditions 168
16.6 Simulation Results 169
16.6.1 DCB Simulations Without Bondline Contraction 169
16.6.2 DCB Simulations with Bondline Contractions 170
16.6.3 ENF Simulations with Bondline Contractions 170
16.7 Conclusion 171
References 173
Chapter 17: Characterization of UV Degraded Carbon Fiber-Matrix Interphase Using AFM Indentation 174
17.1 Introduction 174
17.2 Quantifying Fiber: Bias Effect in Indentation Data 175
17.3 UV Degradation 175
17.4 Conclusion 176
References 177
Chapter 18: A Study on Mechanical Properties of Treated Sisal Polyester Composites 178
18.1 Introduction 178
18.2 Materials and Methods 180
18.3 Results and Discussions 181
18.4 Conclusions 181
References 183
Chapter 19: Strain-Rate-Dependent Failure Criteria for Composite Laminates: Application of the Northwestern Failure Theory to ... 185
19.1 Introduction 185
19.2 Strain-Rate Effects on Matrix-Dependent Properties 185
19.3 Application to Additional Carbon-Epoxy Material Systems 189
19.4 Application to Glass-Epoxy Systems 192
19.5 Summary and Conclusions 194
References 194
Chapter 20: Progressive Failure Analysis of Multi-Directional Composite Laminates Based on the Strain-Rate-Dependent Northwest... 195
20.1 Introduction 195
20.2 Specimen Fabrication and Testing 196
20.3 Crossply Laminates 196
20.4 Crossply Results 197
20.5 Crossply First Ply Failure 198
20.6 Application of the Northwestern Failure Theory to FPF of Crossply Laminates 200
20.7 Comparison to AS4/3501-6 Material System 200
20.8 Quasi-Isotropic Laminates 202
20.9 Quasi-Isotropic Laminate First Ply Failure 202
20.10 Application of Northwestern Failure Theory to Quasi-Isotropic Laminates 203
20.11 Summary and Conclusions 208
References 210
Chapter 21: Experimental Mechanics for Multifunctional Composites and Next Generation UAVs 213
21.1 Introduction 213
21.1.1 Multifunctional Concepts for Next Generation UAVs 213
21.1.2 Tailoring the Building Block Approach to Accelerate Development 215
21.2 Multiscale Experimental Mechanics of CNT-Based Hair Sensors 216
21.2.1 CNT Array Mechanics 216
21.2.2 Internal Mechanics of Hair-Like CNT-Based Sensor 217
21.2.3 Application of Hair-Like Micro-Cantilever Sensor to Bonded Joints 218
21.3 Conclusion 218
References 219
Erscheint lt. Verlag | 8.11.2017 |
---|---|
Reihe/Serie | Conference Proceedings of the Society for Experimental Mechanics Series | Conference Proceedings of the Society for Experimental Mechanics Series |
Zusatzinfo | VIII, 221 p. 233 illus., 201 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik ► Maschinenbau | |
Schlagworte | Applications • Computer Science • conference proceedings • Informatics • Research |
ISBN-10 | 3-319-63408-9 / 3319634089 |
ISBN-13 | 978-3-319-63408-1 / 9783319634081 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 20,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich