Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint (eBook)

(Autor)

eBook Download: PDF
2017 | 1st ed. 2018
XVII, 171 Seiten
Springer International Publishing (Verlag)
978-3-319-67277-9 (ISBN)

Lese- und Medienproben

Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint - Haoyun Tu
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In this thesis, the author investigates experimentally and numerically
the fracture behavior of an electron beam welded joint made from
two butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-
Needleman (GTN) model and the cohesive zone model (CZM) were
adopted to predict the crack propagation of thick compact tension (CT)
specimens. Advantages and disadvantages of the three mentioned models
are discussed. The cohesive zone model is suggested as it is easy to use
for scientists & engineers because the CZM has less model parameters
and can be used to simulate arbitrary crack propagation. The results
shown in this thesis help to evaluate the fracture behavior of a metallic
material. A 3D optical deformation measurement system (ARAMIS) and
the synchrotron radiation-computed laminography (SRCL) technique
reveal for the first time the damage evolution on the surface of the sample
and inside a thin sheet specimen obtained from steel S355. Damage
evolution by void initiation, growth and coalescence are visualized in
2D and 3D laminographic images. Two fracture types, i.e., a flat crack
propagation originated from void initiation, growth and coalescence
and a shear coalescence mechanism are visualized in 2D and 3D images
of laminographic data, showing the complexity of real fracture. In
the dissertation, the 3D Rousselier model is applied for the first time
successfully to predict different microcrack shapes before shear cracks
arise by defining the finite elements in front of the initial notch with
inhomogeneous f0-values. The influence of the distribution of inclusions
on the fracture shape is also discussed. For the analyzed material, a
homogeneous distribution of particles in the material provides the
highest resistance to fracture.



Haoyun Tu is an Assistant Professor at the School of Aerospace Engineering and Applied Mechanics, Tongji University, PR China. He received his BE and ME from Northwestern Polytechnical University, China and Dr.-Ing. from University of Stuttgart, Germany. His research interests are on fracture mechanism of metals and welded joints from metals with experimental and finite element methods as well as on characterization techniques such as 3D optical deformation measurement and Synchrotron radiation-computed laminography (SRCL).

Haoyun Tu is an Assistant Professor at the School of Aerospace Engineering and Applied Mechanics, Tongji University, PR China. He received his BE and ME from Northwestern Polytechnical University, China and Dr.-Ing. from University of Stuttgart, Germany. His research interests are on fracture mechanism of metals and welded joints from metals with experimental and finite element methods as well as on characterization techniques such as 3D optical deformation measurement and Synchrotron radiation-computed laminography (SRCL).

Abstract1. Introduction........................................................................................................................................ 51.1 Motivation ............................................................................................................................... 51.2 Outline ..................................................................................................................................... 52. Scientific background .................................................................................................................... 92.1 Electron beam welding ...................................................................................................... 92.2 Fracture mechanics .......................................................................................................... 102.2.1 The fracture mechanics approach.................................................................... 102.2.2 The Brittle fracture ................................................................................................. 122.2.3 The J-integral ........................................................................................................... 132.3 Constitutive damage models ......................................................................................... 152.3.1 The Rice and Tracey model ................................................................................ 152.3.2 The Rousselier model ........................................................................................... 162.3.3 The Gurson-Tvergaard-Needleman (GTN) model........................................ 182.4 Cohesive zone model (CZM) .......................................................................................... 212.5 ARAMIS system .................................................................................................................. 242.6 Synchrotron Radiation-Computed Laminography (SRCL) .................................. 253. Characterization of steel S355 electron beam welded (EBW) joints ............................ 273.1 Chemical composition ..................................................................................................... 283.2 Microstructures of steel S355 EBW joints ................................................................ 283.3 Mechanical properties of S355 EBW ........................................................................... 303.3.1 Hardness measurement ....................................................................................... 303.3.2 Tensile behaviour of different tensile specimens ....................................... 313.3.3 Fracture surface of notched specimens ........................................................ 413.4 Fracture behaviour of S355 EBW joints ..................................................................... 423.4.1 Fracture toughness tests .................................................................................... 423.4.2 Fracture surface analysis of C(T)-specimens .............................................. 453.5 Summary and conclusions ............................................................................................. 524. The Rousselier model................................................................................................................... 534.1 Parameter study using the Rousselier model ......................................................... 534.1.1 Influence of f0 ........................................................................................................... 544.1.2 Influence of fc ........................................................................................................... 564.1.3 Influence of σk ......................................................................................................... 574.1.4 Influence of lc ........................................................................................................... 594.2 Crack propagation in the homogeneous base material ....................................... 624.3 Crack propagation in an inhomogeneous region ................................................... 704.4 Discussion and Conclusions ......................................................................................... 755. The Gurson-Tvergaard-Needleman (GTN) model ............................................................... 775.1 Parameter study using the GTN model ...................................................................... 775.1.1 Influence of f0 ........................................................................................................... 785.1.2 Influence of fc ........................................................................................................... 805.1.3 Influence of ff ............................................................................................................ 815.1.4 Influence of fn ........................................................................................................... 835.1.5 Influence of ɛn .......................................................................................................... 855.2 Crack propagation in the homogeneous base material ....................................... 895.3 Crack propagation in an inhomogeneous material................................................ 935.4 Discussion and Conclusions ......................................................................................... 966. The Cohesive zone model ........................................................................................................... 996.1 Parameter study using the cohesive model ............................................................. 996.1.1 Influence of cohesive strength T0 and cohesive energy Γ0 ................... 1026.1.2 Influence of the cohesive element.................................................................. 1046.1.3 Influence of the shape of the TSL ................................................................... 1066.2 Crack propagation in S355 base material ............................................................... 1076.2.1 Identification of the cohesive parameters ................................................... 1076.2.2 Identification of the shape of the TSL ........................................................... 1136.3 Crack propagation in S355 fusion zone (FZ) .......................................................... 1146.4 Crack propagation at the interface between the FZ and the HAZ ................... 1156.5 Discussion and Conclusions ....................................................................................... 1187. Optical measurement of crack propagation with the ARAMIS system ..................... 1217.1 Specimen preparation .................................................................................................... 1217.2 Experimental results obtained with ARAMIS ......................................................... 1227.3 Comparison of experiment with simulation results obtained with the GTNmodel ................................................................................................................................... 1277.4 Discussion and Conclusions ....................................................................................... 1318. In situ laminography investigation of damage evolution in S355 base material ... 1358.1 Laminography ................................................................................................................... 1358.2 In situ observation of damage evolution by laminography reconstruction 1378.3 Discussion and Conclusions ....................................................................................... 1659. Summary and Outlook ............................................................................................................... 1699.1 Summary ............................................................................................................................. 1699.2 Outlook ................................................................................................................................ 173Appendix ................................................................................................................................................ 17510. List of Publications .................................................................................................................... 17911. Bibliography ................................................................................................................................. 181Acknowledgements ............................................................................................................................ 191

Erscheint lt. Verlag 12.10.2017
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XVII, 171 p. 190 illus., 163 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Schlagworte 2D Rousselier model • 3D optical deformation measurement system • Cohesive zone model • Crack propagation • Gurson-Tvergaard-Needleman (GTN) model • metal fracture behaviour • numerical fracture energy • shear coalescence mechanism • synchrotron radiation-computed laminography • void initiation
ISBN-10 3-319-67277-0 / 3319672770
ISBN-13 978-3-319-67277-9 / 9783319672779
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99