Emerging Trends in Chemical Sciences (eBook)

eBook Download: PDF
2017 | 1st ed. 2018
IX, 420 Seiten
Springer International Publishing (Verlag)
978-3-319-60408-4 (ISBN)

Lese- und Medienproben

Emerging Trends in Chemical Sciences -
Systemvoraussetzungen
287,83 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Thirty carefully selected, peer-reviewed contributions from the International Conference on Pure and Applied Chemistry (ICPAC 2016) are featured in this edited book of proceedings. ICPAC 2016, a biennial meeting, was held in Mauritius in July 2016. The chapters in this book reflect a wide range of fundamental and applied research in the chemical sciences and interdisciplinary subjects. This is a unique collection of full research papers as well as reviews.

Prof Ponnadurai Ramasami leads the computational chemistry group at the University of Mauritius. The group is involved in using state-of-the-art computational methods to solve chemistry and interdisciplinary problems. Dr Minu Gupta Bhowon is currently Associate Professor of Chemistry at the University of Mauritius. Her areas of research and interest include coordination, natural product chemistry, catalysis and chemical biology. Dr Sabina Jhaumeer-Laulloo is currently Associate Professor of Chemistry at the University of Mauritius. Her areas of research and interest include organic, bio-organic, natural product, co-ordination chemistry and forensic science. Dr Henri Li Kam Wah is currently Associate Professor of Chemistry at the University of Mauritius. From 2002 to 2006, he was the Director of Quality Assurance at the University of Mauritius before assuming the post of Dean of the Faculty of Science from 2006 to 2009. His areas of research and interest include coordination, environmental and natural product chemistry, forensic science, quality assurance and audit in tertiary institutions test.

Prof Ponnadurai Ramasami leads the computational chemistry group at the University of Mauritius. The group is involved in using state-of-the-art computational methods to solve chemistry and interdisciplinary problems. Dr Minu Gupta Bhowon is currently Associate Professor of Chemistry at the University of Mauritius. Her areas of research and interest include coordination, natural product chemistry, catalysis and chemical biology. Dr Sabina Jhaumeer-Laulloo is currently Associate Professor of Chemistry at the University of Mauritius. Her areas of research and interest include organic, bio-organic, natural product, co-ordination chemistry and forensic science. Dr Henri Li Kam Wah is currently Associate Professor of Chemistry at the University of Mauritius. From 2002 to 2006, he was the Director of Quality Assurance at the University of Mauritius before assuming the post of Dean of the Faculty of Science from 2006 to 2009. His areas of research and interest include coordination, environmental and natural product chemistry, forensic science, quality assurance and audit in tertiary institutions test.

Preface 5
Contents 7
Chapter 1: Modulation of the Pancreatic Hormone, Glucagon by the Gut Peptide, GLP-1: Controversies, Challenges and Future Dire... 10
1.1 Introduction 10
1.2 Expression of GLP-1 Receptor on Pancreatic Alpha-Cells 12
1.3 Involvement of Paracrine Processes in GLP-1 Effects on Glucagon Suppression 13
1.4 Can the Effects on Glucagon Release Be Explained by a Direct Action of GLP-1? 13
1.5 Facing Challenges in the Field 14
1.6 Future Directions 15
1.6.1 Improving Methods for GLP-1R Detection 15
1.6.2 Need for More Specific Antibodies for GLP-1 and Glucagon 15
1.6.3 Reconciling Species Differences and Dealing with Major Challenges 16
1.6.4 How Are the Effects of GLP-1 on Glucagon Release Mediated? 16
1.6.5 Does the Metabolite GLP-1(9-36) Play a Role in Islet Physiology? 16
References 17
Chapter 2: Analysis of Non-Conducting Tantalite Minerals by Glow Discharge Optical Emission Spectrometry 19
2.1 Introduction 20
2.2 Experimental 21
2.2.1 Reagents and Equipment 21
2.2.2 Sample Preparation 22
2.3 Results and Discussion 22
2.3.1 Optimization of the Sample Preparation 22
2.3.2 Calibration Curves 23
2.4 Conclusion 27
References 28
Chapter 3: Chemical Composition and Antioxidant Activity of Tagetes minuta L. in Eastern Cape, South Africa 30
3.1 Introduction 31
3.2 Materials and Methods 32
3.2.1 Chemicals 32
3.2.2 Plant Material 32
3.2.3 Isolation of Essential Oil 32
3.2.4 Gas Chromatography-Mass Spectrometry 33
3.2.5 Gas Chromatography 33
3.2.6 DPPH Assay 33
3.2.7 Ferric Reducing Antioxidant Power (FRAP) Assay 34
3.2.8 Statistical Analysis 34
3.3 Results 35
3.3.1 Essential Oil Composition 35
3.3.2 Antioxidant Activity 35
3.4 Discussion 40
3.5 Conclusion 42
References 42
Chapter 4: Therapeutics in Neurodegenerative Disorders: Emerging Compounds of Interest 44
4.1 Introduction 45
4.1.1 Parkinson´s Disease 45
4.1.2 Alzheimer´s Disease 45
4.1.3 Amyotrophic Lateral Sclerosis 46
4.1.4 Huntington´s Disease 46
4.2 Therapeutic Compounds in PD 47
4.2.1 Transcription Factors 47
4.2.2 Lipid Carriers for Levodopa Co-Drugs 47
4.2.3 Levodopa Adjuncts 47
4.2.4 Receptor Targets 48
4.2.5 Supplements 49
4.2.6 PEG Polymer 49
4.2.7 Metabolites 49
4.2.8 Protein Targets 50
4.2.9 Other Potential Targets 50
4.3 Therapeutic Compounds in AD 51
4.3.1 Anxiolytics 51
4.3.2 Alginate-Derived Oligosaccharide 51
4.3.3 Tricyclic Pyrones 51
4.3.4 Molecular Chaperones and Receptor Targets 52
4.3.5 Immunosuppressive Drugs 52
4.3.6 Tau-Centric Targets and Drugs 52
4.3.7 Acetylcholinesterase and Other Compounds 53
4.3.8 Combination Drug Targets 53
4.3.9 Peptide Therapeutics 53
4.3.10 Targetting RNA and MicroRNA 54
4.4 Therapeutic Compounds in ALS 54
4.4.1 Riluzole 54
4.4.2 Dopamine D2 Receptor Agonists 54
4.4.3 Potassium Channel Blockers 55
4.4.4 Chemical Chaperone 55
4.4.5 H1 Receptor Antagonists 55
4.4.6 Bile Acids 55
4.4.7 NOX Inhibitors 55
4.4.8 New Drug Entities 56
4.4.9 Targetting Microtubules 56
4.4.10 Natural Compounds 56
4.4.11 AMPA Receptor Antagonists 56
4.5 Therapeutic Compounds in HD 56
4.5.1 Natural Products 56
4.5.2 Dopaminergic Stabilizers 57
4.5.3 Mitochondrial Targets 57
4.5.4 Peptides Targeting Proteins 57
4.5.5 Intracellular Antibodies 57
4.5.6 Pro-Apoptotic Proteins 58
4.5.7 Antisense Oligonucleotides 58
4.6 Conclusion 58
References 59
Chapter 5: Investigation of Heavy Metal Hazards Status and Their Potential Health Risks in Vegetables Irrigated with Treated W... 64
5.1 Introduction 65
5.2 Materials and Methods 66
5.2.1 Site Description 66
5.2.2 Sampling Strategy and Sample Preparation 66
5.2.3 Quality Assurance, Quality Control and Heavy Metal Analysis 68
5.2.4 Analysis of Data 68
5.2.5 Potential Health Risk from Consuming Vegetable 69
5.3 Results and Discussion 70
5.3.1 Metal Concentrations, Uptake and Enrichment 70
5.3.2 Metal Daily Intake and Health Risk Assessment 72
5.4 Conclusion 72
References 73
Chapter 6: Removal of Fluoride from Ground Water by Adsorption Using Industrial Solid Waste (Fly Ash) 75
6.1 Introduction 77
6.2 Adsorption Experiments 80
6.2.1 Preparation of Adsorbent 80
6.2.2 Preparation of Synthetic F- Solution 80
6.2.3 Reagents and Instruments 80
6.2.4 Adsorption Experiments and Analytical Method 81
6.3 Results and Discussion 81
6.3.1 Effects of Operating Parameters 81
6.3.1.1 pH 81
6.3.1.2 Contact Time 82
6.3.1.3 Initial Fluoride Concentration 82
6.3.1.4 Adsorbent Dosage 82
6.3.1.5 Coexisting Ions 83
6.3.2 Adsorption Kinetics Study 83
6.3.2.1 Pseudo 1st-Order Model [34] 83
6.3.2.2 Pseudo 2nd-Order Model [35] 83
6.3.2.3 Elovich Model [36] 84
6.3.2.4 Pore Diffusion, Intra-Particle Diffusion Model [37] 84
6.3.2.5 Mass Transfer Control Process [38] 85
6.3.3 Adsorption Mechanism 85
6.3.3.1 Determination of Rate Limiting Step 86
6.3.4 Adsorption Isotherm Study 86
6.3.5 Thermodynamic Study 88
6.4 Properties of Fly Ash 89
6.5 Conclusions 90
References 92
Chapter 7: Comparative Review of the Synthesis of Flavanones via the Reaction of Cinnamic Acids and Phenols and the Reaction o... 94
7.1 Introduction 94
7.2 Preparation of Flavanones via the Reaction of Cinnamic Acids and Phenols 95
7.3 Preparation of Flavanones via the Reaction of 2-Hydroxyacetophenones and Benzaldehydes 98
7.4 Conclusion 104
References 104
Chapter 8: Calcium Alginate-Mangifera indica Seed Shell Composite as Potential Biosorbent for Electroplating Wastewater Treatm... 105
8.1 Introduction 105
8.2 Materials and Methods 106
8.2.1 Mango Seed Shell Preparation and Characterization 106
8.2.2 Composite Sorbent Preparation 107
8.2.3 Sorption Experiments 107
8.3 Results and Discussion 109
8.3.1 Carboxyl Functionalization 109
8.3.2 Sorption of Cu, Cr, Ni and Fe from Electroplating Wastewater 111
8.3.2.1 Sorption from Acidified Wastewater (pH 1.8) 111
8.3.2.2 Sorption from Raw Wastewater (pH 3.4) 112
8.4 Conclusions 115
References 115
Chapter 9: Nitrogen Absorption and Immobilization Patterns as Cataysed by the Roots of Acacia Plants 117
9.1 Introduction 118
9.2 The Nitrogen Cycle 119
9.3 Effect of Land Degradation in Lake Victoria Basin 122
9.4 Justification 122
9.5 Soil Fertility 122
9.6 Contributions of N through Biological N2-Fixation 124
9.7 Nutrients and Plants Growth 125
9.7.1 Gains in Soil Nitrogen 125
9.8 Chemical Properties of Soil Phosphorus 126
9.9 Description of A. nilotica, A. senegal and A. xanthophloea 126
9.10 Ecology of Acacias 127
9.11 Experimental Site 128
9.12 Experimental Design and Sampling Methods 128
9.13 Sources of Seeds and Seed Scarification 129
9.14 Soil and Plant Sample Preparation 129
9.15 Soil pH in Water 129
9.16 Analysis of Total Nitrogen and Phosphorus in Plants and Soils 130
9.16.1 Procedure Using a Block Digester 130
9.16.2 Determination of Total Nitrogen and Phosphorus in Soil 131
9.16.3 Determination of Total Nitrogen and Phosphorus in Plant Tissue 131
9.17 Data Analysis 131
9.18 Results 131
9.18.1 Nutrients Concentrations in Maize Leaves Intercropped with A. nilotica at Three Different Spacings 131
9.18.2 Nutrient Levels in Soils Derived from Plots of Different A. nilotica Spacings 133
9.18.3 Influence of A. nilotica Spacing on Maize Grain Yield 137
9.18.4 Concentration of Nutrients in Leaves of Maize Plants Intercropped with Various Acacia Species 137
9.18.5 Soil Characteristics in Acacia Species Experiments 140
9.18.6 Influence of Intercropping with Various Acacia Species on Maize Yield 141
9.19 Discussion 141
9.19.1 Nutrients Concentrations in Maize Leaves in A. nilotica of Three Different Spacings 141
9.19.2 Soil Nitrogen and Soil Phosphorus in A. nilotica of Different Spacings 145
9.19.3 Maize Grain Yield 146
9.19.4 Concentration of Nutrients in Leaves of Maize Plants Intercropped with Various Acacia Species 147
9.19.5 Nitrogen and Phosphorus in Soils Derived from Plots with Acacia Species Intercropping 148
9.19.6 Maize Grain Yield with Acacia Species 148
9.20 Summary and Conclusions 149
9.21 Future Research 150
References 150
Chapter 10: Ultrasonic-Assisted Dispersive Solid Phase Microextraction (UA-DSPME) Using Silica@Multiwalled Carbon Nanotubes Hy... 153
10.1 Introduction 154
10.2 Experimental 155
10.2.1 Materials and Reagents 155
10.2.2 Samples 156
10.2.3 Cautions and Safety Considerations 156
10.2.4 Instrumentation 156
10.2.5 Preparation of SiO2@MWCNTs Adsorbent 157
10.2.6 UA-DSPME Procedure 157
10.3 Results and Discussion 158
10.3.1 Characteristics of SiO2@MWCNTs 158
10.3.2 Optimization of UA-DSPME 158
10.3.2.1 Factorial Design 158
10.3.2.2 Further Optimization 160
10.3.3 Analytical Figures of Merit 162
10.3.4 Validation and Application 163
10.4 Conclusions 163
References 164
Chapter 11: Removal of Ni(II) and Co(II) from Aqueous Solution Using Pine Cone: A Mechanism Study 166
11.1 Introduction 166
11.2 Materials and Methods 167
11.2.1 Materials 167
11.2.2 Methods 168
11.2.2.1 Determination of Charge Properties of Pine Cone 168
11.2.2.2 Effect of Initial Solution pH on Ni(II) and Co(II) Adsorption 168
11.2.2.3 Fourier Transform Infrared (FTIR) Spectroscopy Analysis 168
11.2.2.4 Scanning Electron Microscope (SEM) 168
11.2.2.5 Equilibrium Isotherm and Desorption Studies 168
11.3 Results and Discussion 169
11.3.1 Acidic and Basic Functional Groups on Pine Cone 169
11.3.2 pH at Point Zero Charge (pHpzc) 169
11.3.3 Effect of Solution pH During Uptake of Ni(II) and Co(II) by Pine Cone 170
11.3.4 Changes in Equilibrium pH 172
11.3.5 FTIR Spectra of Pine Cone Before and After Biosorption 174
11.3.6 Scanning Electron Microscope Analysis of Pine Cone 177
11.3.7 Equilibrium Biosorption of Ni(II) and Co(II) onto Pine Cone 177
11.3.7.1 Dubinin-Radushkevich (D-R) Isotherm 178
11.3.7.2 Temkin Isotherm 179
11.3.7.3 Comparison of Fit of Isotherm Model 180
11.3.8 Desorption 182
11.4 Conclusion 183
References 184
Chapter 12: Speciation Analysis of Inorganic Sb, Se and Te in Environmental Samples Using Modified TiO2@MWCNTs Nanocomposite P... 187
12.1 Introduction 188
12.2 Experimental Section 189
12.2.1 Reagents and Materials 189
12.2.2 Instrumentation 190
12.2.3 Synthesis, Modification and Characterization of TiO2@f-MWCNTs 190
12.2.4 Sample Preparation 191
12.2.5 Multivariate Optimization of SPE-HG-ICP-OES System 191
12.3 Results and Discussion 192
12.3.1 Multivariate Optimization of the SPE-HG-ICP-OES Method 192
12.3.2 Analytical Figures of Merit 193
12.3.3 Reusability 193
12.3.4 Validation and Application of the Developed Method 194
12.4 Conclusion 195
Supplementary Data 197
References 201
Chapter 13: Nano Transition Metal Alloy Functionalized Lithium Manganese Oxide Cathodes-System for Enhanced Lithium-Ion Batter... 203
13.1 Introduction 204
13.2 Nanoalloys 204
13.3 Active Materials for the Positive Electrode of the Li-Ion Batteries 205
13.4 Modification Techniques to Advance Cathode Performances 206
13.5 Nanocoating 206
13.6 Methodology 207
13.6.1 Synthesis of Spinel LiMn2O4 207
13.6.2 Synthesis of Nanoparticles in Microemulsion 207
13.6.3 Synthesis of Bimetallic Pt/Au NPs 207
13.6.4 Synthesis of Alloy Functionalized LiMn2O4 and Coin-Cell Assembly 208
13.7 Characterization 208
13.7.1 Charge/Discharge Profile at High and Low Current Densities 209
13.7.2 Effect of Heating 209
13.7.3 Chemical Composition and Particle Morphology 210
13.7.4 Crystal Structure and Phase Composition Analysis by X-ray Diffraction 212
13.7.5 Fourier-Transform Infrared and Raman Vibrational Spectroscopic Sample Analysis 215
13.8 Electrochemical Performances 216
13.8.1 Charge/Discharge Performance of LiPtAu0.02Mn1.98O4 Cathode 218
13.8.2 Rate Capability 218
13.8.3 Discharge Performance of LiPtAu0.02Mn1.98O4 218
13.9 Conclusion 220
References 221
Chapter 14: Synthesis, Spectral Analysis and Biological Evaluation of 5-Substituted 1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsul... 223
14.1 Introduction 224
14.2 Experimental Section 225
14.2.1 Measurements 225
14.2.2 Synthesis 225
14.2.2.1 General Procedure for the Synthesis of Different Aralkyl/Aryl Substituted Ethyl Esters (2a-2k) 225
14.2.2.2 General Procedure for the Synthesis of Different Aralkyl/Aryl Substituted Hydrazides (3a-3k) 225
14.2.2.3 General Procedure for the Synthesis of 5-Aralkyl/Aryl-1,3,4-Oxadiazole-2-Thiols (4a-4k) 226
14.2.2.4 Procedure for the Synthesis of 1-(4-(Bromomethyl) Phenylsulfonyl)Piperidine (5) 226
14.2.2.5 General Procedure for the Synthesis of 5-Aralkyl/Aryl-1,3,4-Oxadiazole-2-yl 4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide ... 226
14.2.2.6 5-(1-(Phenylsulfonyl)Piperidin-4-yl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide (6a) 227
14.2.2.7 5-(4-Methylphenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6b) 227
14.2.2.8 5-(4-Hydroxyphenyl)-1,3,4-Oxadiazole-2-yl-4,4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide (6c) 228
14.2.2.9 5-(4-Aminophenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide (6d) 228
14.2.2.10 5-(4-Nitrophenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide (6e) 228
14.2.2.11 5-(2-Chlorophenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6f) 229
14.2.2.12 5-(4-Chlorophenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6g) 229
14.2.2.13 5-Benzyl-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6h) 229
14.2.2.14 5-(2-Phenylethenyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6i) 230
14.2.2.15 5-(Naphthalen-1-ylmethyl)-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl)Benzyl Sulfide (6j) 230
14.2.2.16 5-Phenyl-1,3,4-Oxadiazole-2-yl-4-(Piperidin-1-ylsulfonyl) Benzyl Sulfide (6k) 231
14.2.3 Butyrylcholinesterase Assay 231
14.2.4 Molecular Docking 232
14.3 Results and Discussion 232
14.3.1 Chemistry 232
14.3.2 Enzyme Inhibition Activity (In vitro) 235
14.3.3 Molecular Docking Analysis 236
14.4 Conclusion 239
References 239
Chapter 15: Cation Influence on Zirconium/Hafnium Fluoride Coordination 241
15.1 Introduction 242
15.2 Experimental 244
15.2.1 Reagents and Equipment 244
15.2.2 Syntheses and Characterization of Zirconium/Hafnium Fluoride Compounds 244
15.2.3 Crystallography 244
15.3 Discussion of Results 245
15.3.1 Syntheses of the Different Zirconium/Hafnium Fluorido Complexes 250
15.3.2 Crystal Structures of the Different Zirconium Fluorido Complexes 250
15.3.2.1 Crystal Structure of Potassium di-?-fluorido-tetrafluoridozirconate(IV), K2ZrF6 250
15.3.2.2 Crystal Structure of Rubidium Hexafluorido Zirconate(IV), Rb2ZrF6 254
15.3.2.3 Crystal Structure of Cesium Hexafluorido Zirconate(IV), Cs2ZrF6 254
15.3.2.4 Crystal Structure of Tetraethyl ammonium di-?-fluorido-bis-(trifluoridozirconate(IV)) monohydrate, (N(C2H5)4)[ZrF5]H2O 255
15.3.2.5 Crystal Structure of Ammonium mono-?-fluorido-tris-?-fluorido bis-tetrafluoridozirconate(IV) monohydrate, (NH4)2[ZrF6... 256
15.3.3 Crystal Structures of the Different Hafnium Fluorido Complexes 257
15.3.3.1 Crystal Structure of Potassium di-?-fluorido-bis-tetrafluoridohafnatate(IV), K2HfF6 257
15.3.3.2 Crystal Structure of Rubidium Di-?-fluorido-bis-tetrafluoridohafnatate(IV), Rb2HfF6 257
15.3.3.3 Crystal Structure of Cesium Hexafluorido Hafnatate(IV), Cs2HfF6 260
15.3.3.4 Crystal Structure of Tetraphenylphosphonium hexafluorido hafnatate(IV) dihydrate, (PPh4)2HfF62H2O 260
15.3.4 Comparison of Results 260
15.4 Conclusion 263
References 264
Chapter 16: Beneficiation of Niobium and Tantalum from Tantalite Ore Using Physical and Chemical Processes 268
16.1 Introduction 269
16.2 Experimental 272
16.2.1 Reagents and Equipment 272
16.2.2 Separation and Analytical Procedures 273
16.2.2.1 Preparation of ICP-OES Calibration Solutions and Measurements 273
16.2.2.2 Magnetic Separation of Impurities from Tantalite (Step 1 in Fig. 16.1) [11] 273
16.2.2.3 Acid Leaching of Radioactive Materials (Step 2 in Fig. 16.1) 274
16.2.2.4 Dissolution of Residual Ore Samples 274
16.2.2.5 Solvent Extraction Separation of Nb and Ta in Mineral Samples (Step 3 in Fig. 16.1) 274
16.2.2.6 Ion Exchange Separation (Step 4 in Fig. 16.1) 275
16.2.2.7 Characterization of Ta and Nb Products 275
16.3 Results and Discussion 276
16.3.1 Removal of Impurities by Magnetic Separation and Acid Leaching (Steps 1 and 2) 276
16.3.2 Solvent Extraction of Tantalum from Tantalite Matrices (Step 3) 278
16.3.3 Ion Exchange Separation of Nb from Tantalite Matrices (Step 4) 279
16.3.4 Determination of the Quality of Ta and Nb Purification Products 280
16.4 Conclusion 281
References 282
Chapter 17: Recent Applications of Laccase Modified Membranes in the Removal of Bisphenol A and Other Organic Pollutants 285
17.1 Introduction 286
17.2 Bisphenol A 286
17.2.1 Origin and Prevalence 286
17.2.2 Health Effects of BPA 288
17.3 Conventional Wastewater Treatment Methods for the Removal of BPA 289
17.3.1 Physical Methods 289
17.3.1.1 Adsorption 289
17.3.1.2 Membrane Separation 290
17.3.2 Chemical Methods 290
17.3.2.1 Advanced Oxidation Processes 290
17.3.3 Biological Methods 290
17.3.3.1 Use of Activated Sludge 291
17.3.3.2 Use of Algal-Bacterial System 291
17.4 Enzymatic Degradation 291
17.4.1 Membranes as Suitable Supports for Enzyme Immobilization 292
17.4.2 Methods for the Immobilisation of Enzymes 293
17.4.2.1 Adsorption 293
17.4.2.2 Entrapment 294
17.4.2.3 Covalent Binding 294
17.5 Removal of BPA and Other Pollutants by Laccase Modified Membranes 295
17.5.1 Laccase Modified Chitosan Based Nanofibrous Membranes 295
17.5.2 Poly(Methyl Methacrylate-co-Ethyl Acrylate) Microfibrous Membrane 296
17.5.3 Laccase Immobilized Poly(Styrene-alt-Maleic Anhydride)/Poly(Styrene-co-Maleic Anhydride) Support 297
17.5.4 Laccase Carrying Polyamide 6/Chitosan Nanofibers 298
17.5.5 Laccase Immobilized on Poly(d,l-Lactide), Poly(d,l-Lactide-co-Glycolide) and Methoxypolyethylene Glycol-Poly(Lactide-co... 298
17.5.6 Laccase-Poly(d,l-Lactic-co-Glycolic Acid) Nanofibrous Membrane 299
17.5.7 Laccase-Multiwalled Carbon Nanotubes/Poly(d,l-Lactide-co-Glycolide) 299
17.5.8 Laccase-Multiwalled Carbon Nanotubes/Poly(d,l-Lactide) Nanofibrous Membrane 300
17.5.9 Cross-linked Carbon Nanotubes-Based Biocatalytic Membranes 301
17.5.10 Laccase Supported on TiO2 Nanoparticles 303
17.5.11 Laccase Supported on Magnetic Fe3O4/SiO2 Nanoparticles 304
17.5.12 Laccase Immobilized on Nanoparticles Functionalized Membranes 305
17.5.13 Laccase Based-Enzyme Membrane Reactors 305
17.6 Conclusion 306
References 307
Chapter 18: Synthesis and Characterization of a Novel Bio Nanosponge Filter (pMWCNT-CD/TiO2-Ag) as Potential Adsorbent for Wat... 313
18.1 Introduction 313
18.2 Experimental Methodology 315
18.2.1 Chemicals and Materials 315
18.2.2 Purification and Oxidation of Multi-walled Carbon Nanotubes 315
18.2.3 Synthesis of the Biopolymer Nanocomposites: pMWCNT-CD/Ag-TiO2 316
18.2.3.1 Phosphorylation of Oxidized MWCNTs 316
18.2.3.2 Polymerisation of Phosphorylated MWCNTs (pMWCNTs) with ?-CDs 316
18.2.3.3 Sol-Gel Method to Obtain pMWCNTs-CD/Ag-TiO2 Biopolymer 316
18.2.3.4 Synthesis of Native CD Polymer 317
18.2.4 Characterization Techniques 317
18.2.5 Preliminary Adsorption Experiments 318
18.3 Results and Discussion 318
18.3.1 Purification and Oxidation of MWCNTs 318
18.3.2 Synthesis of Phosphorylated MWCNTs 319
18.3.3 Synthesis of the Bio Nanosponge Filter: pMWCNT-CD/Ag-TiO2 322
18.3.3.1 Synthesis of pMWCNT-CD Polymer 322
18.3.3.2 Sol-Gel Method to Obtain pMWCNT-CD/Ag-TiO2 323
FTIR Analysis 324
TGA Analysis 324
DSC Analysis 326
Raman Spectroscopy Analysis 330
XRD Spectroscopy Analysis 332
BET Surface Area Analysis 334
Electron Microscopy Analysis 335
18.3.4 Preliminary Adsorption Studies 335
18.4 Conclusion 340
References 341
Chapter 19: Novel Approaches to Environmental Monitoring 344
19.1 Introduction 344
19.2 Denuders for Monitoring Semi-volatile Organic Air Pollutants 345
19.3 Lichens as Biomonitors of Air Pollution 347
19.4 Fluorescence Sensors for Pollutants 349
19.5 Concluding Comments 350
References 352
Chapter 20: Endosymbiotic Bacteria Isolated from Algoa and Kalk Bay, South Africa, as Source of Antimicrobial Compounds 354
20.1 Introduction 355
20.2 Materials and Methods 356
20.2.1 Materials 356
20.2.2 Methods 356
20.2.2.1 Cultivation of the Isolated Strains 356
20.2.2.2 Antimicrobial Activity Screening 356
20.2.2.3 Genetic Characterization 358
20.3 Results and Discussion 358
20.3.1 Antimicrobial Screening 358
20.3.2 Genetic Identification 360
20.4 Conclusion 361
References 361
Chapter 21: Pd-MCM-41 and Ni-Boride-Silica Catalyst Synthesis, Characterization and Its Application for Reduction of Substitut... 364
21.1 Introduction 364
21.2 Valuable Catalytic Applications 365
21.3 Experimental Section 367
21.3.1 Materials and Methods 367
21.3.2 Preparation of Ni-SiO2 (Cat A) 367
21.3.3 Typical Reduction Procedure Using Cat A 368
21.3.4 Preparation of Pd(II)-MCM-41 (Cat B) 368
21.3.5 Typical Reduction Procedure Using Cat B 368
21.3.6 Characterization of Catalysts 369
21.4 Results and Discussion 369
21.4.1 X-Ray Diffraction 370
21.4.2 UV Visible Spectroscopy 371
21.4.3 BET Surface Area 371
21.4.4 Dispersion of Ni on Silica Surface 371
21.4.5 SEM Characterization 372
21.4.6 FT-IR Spectroscopy of Ni-SiO2 (Cat A) 373
21.4.7 FT-IR Spectroscopy of Pd(II)-MCM-41 (Cat B) 373
21.4.8 Chemisorption of Ni Silica Catalysts 374
21.5 Conclusions 374
References 375
Chapter 22: Antidiabetic Potential of Erythrina abyssinica via Protein Tyrosine Phosphate 1B Inhibitory Activity 376
22.1 Introduction 376
22.2 Isolation 378
22.2.1 Flavanones 379
22.2.2 Chalcones 382
22.2.3 Pterocarpans 384
22.2.4 Deoxyflavonoids 385
22.3 Conclusion 385
References 387
Chapter 23: 2-Amino-5-Bromo-3-Iodoacetophenone and 2-Amino-5-Bromo-3-Iodobenzamide as Synthons for Novel Polycarbo-Substituted... 389
23.1 Introduction 390
23.2 Sequential Halogenation of 2-Aminoacetophenone and 2-Aminobenzamide 392
23.3 Palladium Catalyzed Cross-Coupling of the Dihalogenated Aniline Derivatives 8a and 8b 393
23.4 Palladium Catalyzed Route to Indole Derivatives 394
23.5 Molecular Hybridization of Indole and Chalcone on the Same Molecular Framework 396
23.6 Synthesis of 2,3-Dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 399
23.7 Conclusions and Perspectives 399
References 401
Chapter 24: Processability Issue in Inverted Organic Solar Cells 403
24.1 Introduction 404
24.1.1 Research Areas in Organic Solar Cells 405
24.1.2 An Overview of Inverted Organic Solar Cells 407
24.1.3 Transport Layers in Inverted Organic Solar Cells 409
24.2 Processability Issue in Inverted Organic Solar Cells 412
24.2.1 PEDOT:PSS Hole Transport Layer 412
24.2.2 Wettability Issue of PEDOT:PSS in Inverted Organic Solar Cells 412
24.3 Modification of PEDOT:PSS with Additives 413
24.4 Conclusions and Outlook 414
References 415

Erscheint lt. Verlag 10.10.2017
Zusatzinfo IX, 420 p.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie Physikalische Chemie
Technik
Schlagworte Drug discovery and chemistry • ICPAC 2016 • International Conference on Pure and Applied Chemistry • Nanotechnology and chemistry • Trends in analytical chemistry • Trends in materials chemistry
ISBN-10 3-319-60408-2 / 3319604082
ISBN-13 978-3-319-60408-4 / 9783319604084
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99