Control Techniques for LCL-Type Grid-Connected Inverters -  Chenlei Bao,  Weiwei Li,  Donghua Pan,  Xinbo Ruan,  Xuehua Wang,  Dongsheng Yang

Control Techniques for LCL-Type Grid-Connected Inverters (eBook)

eBook Download: PDF
2017 | 1. Auflage
XXII, 307 Seiten
Springer Singapore (Verlag)
978-981-10-4277-5 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on control techniques for LCL-type grid-connected inverters to improve system stability, control performance and suppression ability of grid current harmonics. Combining a detailed theoretical analysis with design examples and experimental validations, the book offers an essential reference guide for graduate students and researchers in power electronics, as well as engineers engaged in developing grid-connected inverters for renewable energy generation systems.



Xinbo Ruan received his BS and PhD degrees in Electrical Engineering from Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 1991 and 1996, respectively. In 1996, he joined the College of Automation Engineering, NUAA, where he became a Professor in 2002. From August to October 2007, he was a Research Fellow at the Department of Electronic and Information Engineering, Hong Kong Polytechnic University. Since March 2008, he has also been with the School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China. He is an author or co-author of 7 books and more than 200 technical papers. His current research interests include soft-switching dc-dc converters, dc-ac inverters, power electronics system integration, and renewable energy generation systems.

Dr. Ruan was named an IEEE Fellow in 2016. He was awarded by the IEEE Transactions on Industrial Electronics for his outstanding dedication and contributions in 2012. He was a recipient of the Delta Scholarship by the Delta Environment and Education Fund in 2003 and was a recipient of the Special Appointed Professor of the Chang Jiang Scholars Program by the Ministry of Education, China, in 2007. From 2005 to 2013, he was the Vice President of the China Power Supply Society. From 2014 to 2016, he was the Vice Chair of the Technical Committee on Renewable Energy Systems within the IEEE Industrial Electronics Society. Currently, he serves as an Associate Editor for the journals IEEE Transactions on Industrial Electronics, IEEE Transactions on Power Electronics, IEEE Journal of Emerging and Selected Topics on Power Electronics, and IEEE Transactions on Circuits and Systems-II.



This book focuses on control techniques for LCL-type grid-connected inverters to improve system stability, control performance and suppression ability of grid current harmonics. Combining a detailed theoretical analysis with design examples and experimental validations, the book offers an essential reference guide for graduate students and researchers in power electronics, as well as engineers engaged in developing grid-connected inverters for renewable energy generation systems.

Xinbo Ruan received his BS and PhD degrees in Electrical Engineering from Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 1991 and 1996, respectively. In 1996, he joined the College of Automation Engineering, NUAA, where he became a Professor in 2002. From August to October 2007, he was a Research Fellow at the Department of Electronic and Information Engineering, Hong Kong Polytechnic University. Since March 2008, he has also been with the School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China. He is an author or co-author of 7 books and more than 200 technical papers. His current research interests include soft-switching dc–dc converters, dc–ac inverters, power electronics system integration, and renewable energy generation systems.Dr. Ruan was named an IEEE Fellow in 2016. He was awarded by the IEEE Transactions on Industrial Electronics for his outstanding dedication and contributions in 2012. He was a recipient of the Delta Scholarship by the Delta Environment and Education Fund in 2003 and was a recipient of the Special Appointed Professor of the Chang Jiang Scholars Program by the Ministry of Education, China, in 2007. From 2005 to 2013, he was the Vice President of the China Power Supply Society. From 2014 to 2016, he was the Vice Chair of the Technical Committee on Renewable Energy Systems within the IEEE Industrial Electronics Society. Currently, he serves as an Associate Editor for the journals IEEE Transactions on Industrial Electronics, IEEE Transactions on Power Electronics, IEEE Journal of Emerging and Selected Topics on Power Electronics, and IEEE Transactions on Circuits and Systems-II.

Chapter 1. Introduction.- Chapter 2. Design of LCL Filters.- Chapter 3. Magnetic Integration of LCL Filters.- Chapter 4. Resonance Damping Solutions for LCL Filter.- Chapter 5. Controller Design for LCL-Type Grid-Connected Inverters with Capacitor-Current-Feedback Active Damping.- Chapter 6. Full Feed-Forward of Grid Voltage for Single-Phase LCL-Type Grid-Connected Inverters.- Chapter 7. Full-Feedforward Scheme of Grid Voltages for Three-Phase LCL-Type Grid-Connected Inverters.- Chapter 8. Design Considerations of Digitally-Controlled LCL-Type Grid-Connected Inverters with Capacitor-Current-Feedback Active-Damping.- Chapter 9. Reduction of Computation Delay for Improving Stability and Control Performance of LCL-Type Grid-Connected Inverters.- Chapter 10. Impedance Shaping of LCL-Type Grid-Connected Inverters to Improve Adaptability to Weak Grids.- Chapter 11. Weighted-Feedforward Scheme of Grid Voltages for Three-Phase LCL-Type Grid-Connected Inverters Under Weak Grid Conditions.- Chapter 12. Prefilter-Based Synchronous Reference Frame Phase-Locked Loop Techniques.

Erscheint lt. Verlag 26.7.2017
Reihe/Serie CPSS Power Electronics Series
Zusatzinfo XXII, 305 p. 203 illus., 190 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte active damping • Current Regulator • Digital Control • Feedforward Scheme • Magnetic Integration • Phase-Locked Loop • Renewable Energy Generation System
ISBN-10 981-10-4277-2 / 9811042772
ISBN-13 978-981-10-4277-5 / 9789811042775
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99