Dual-Mode Electro-photonic Silicon Biosensors (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XV, 149 Seiten
Springer International Publishing (Verlag)
978-3-319-60501-2 (ISBN)

Lese- und Medienproben

Dual-Mode Electro-photonic Silicon Biosensors - José Juan Colás
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This highly interdisciplinary thesis reports on two innovative photonic biosensors that combine multiple simultaneous measurements to provide unique insights into the activity and structure of surface immobilized biological molecules. In addition, it presents a new silicon photonic biosensor that exploits two cascaded resonant sensors to provide two independent measurements of a biological layer immobilized on the surface. By combining these two measurements, it is possible to unambiguously quantify the density and thickness of the molecular layer; here, the approach's ability to study molecular conformation and conformational changes in real time is demonstrated.

The electrophotonic biosensor integrates silicon photonics with electrochemistry into a single technology. This multi-modal biosensor provides a number of unique capabilities that extend the functionality of conventional silicon photonics. For example, by combining the complementary information revealed by simultaneous electrochemical and photonic measurements, it is possible to provide unique insights into on-surface electrochemical processes. Furthermore, the ability to create electrochemical reactions directly on the silicon surface provides a novel approach for engineering the chemical functionality of the photonic sensors. The electrophotonic biosensor thus represents a critical advance towards the development of very high-density photonic sensor arrays for multiplexed diagnostics.

Supervisor’s Foreword 7
Abstract 9
Acknowledgements 10
Contents 11
1 Preamble 14
1.1 The Need for Biosensors 14
1.2 Dual-Mode Silicon Electro-Photonic Biosensors 15
1.3 Goals of This Thesis 17
1.4 Outline of the Thesis 18
References 19
2 Introduction to Label-Free Biosensing 20
2.1 Motivation 20
2.2 State-of-the-Art Label-Free Technologies 22
2.3 Single-Domain Techniques 23
2.3.1 Electronic Biosensing 24
2.3.2 Photonic Waveguide-Based Detection Strategies 26
2.4 Bi-Domain Techniques 37
2.4.1 Electrochemical Surface Plasmon Resonance 37
2.4.2 Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring 38
2.4.3 Electrochemical Optical Waveguide Lightmode Spectroscopy 40
2.4.4 Electro-Photonic Silicon Biosensing 40
2.5 Self-assembled Monolayers 41
2.5.1 Formation of Self-assembled Monolayers 43
2.5.2 Assembly of Silane SAMs on Silicon 43
2.6 Summary 44
References 45
3 Fabrication and Experimental Techniques 49
3.1 Introduction 49
3.2 Nanofabrication Processes 49
3.2.1 Diffusion Doping 50
3.2.2 Thermal Evaporation 53
3.2.3 Electron Beam Lithography 53
3.2.4 Reactive Ion Etching 57
3.2.5 Microfluidics 58
3.3 Electrochemistry 61
3.3.1 Semiconductor-Electrolyte Interfaces 61
3.3.2 Electrochemical Measurements 64
3.3.3 Cyclic Voltammetry 66
3.4 Electro-Optical Characterisation Setup 67
3.5 Summary 67
References 69
4 The Electro-Photonic Silicon Biosensor 70
4.1 Alternatives 70
4.2 Profile Controlled N-Type Doping 73
4.2.1 Bulk Doping Characterisation 75
4.2.2 Doping Profile Characterisation 76
4.3 Ohmic Contacts on Silicon 79
4.4 Combining Optical and Electrochemical Sensing 83
4.4.1 Summary of the Sample Fabrication Process 88
4.5 Doping Impact on the Optical Device Performance 89
4.5.1 Assisted Optical Validation of the Q-Factor of a Lossy Cavity 91
4.5.2 Correlation Between Doping Concentration and Optical Loss 93
4.6 Dual-Mode Photonic/Electrochemical Validation 94
4.7 Limitations 98
4.8 Comparison to Similar Bi-Domain Approaches 100
4.9 Summary 101
References 102
5 Study and Application of Electrografted Layers of Diazonium Ions 105
5.1 Introduction 105
5.2 Application of Diazonium Ions 106
5.3 Structure of Electrografted Layers of Diazonium Ions 108
5.3.1 Electrografting of 4-Ethynylbenzene Diazonium 108
5.3.2 Electrografting of the Diazonium Salt of N-(4-aminophenyl)maleimide 110
5.3.3 Electrografting of 4-Azidoaniline 110
5.3.4 Control Experiments of the Electroreduction of Diazonium Salts 113
5.4 Functionalisation of Electrografted Layers of Diazonium Ions 115
5.4.1 Immobilisation of Thiolated Molecules 116
5.4.2 Functionalisation Through Copper-Catalyzed Azide-Alkyne Huisgen Cycloaddition (CuAAC) 117
5.5 Site-Selective Functionalisation of Optical Biosensors 118
5.5.1 Sensor Microarray Fabrication 119
5.5.2 Selectively Functionalised Photonic DNA Microarray 119
5.5.3 Control Experiments for Selective DNA Hybridization 124
5.6 Summary 126
References 127
6 Tailoring Light-Matter Interaction for Quantification of Biological and Molecular Layers 129
6.1 Introduction 129
6.2 Geometry Control on Silicon Electro-Photonic Biosensors: The Cascaded Ring Resonator Configuration 130
6.2.1 Cascaded Ring Design and Fabrication 131
6.3 Extraction of Thickness and Refractive Index 135
6.4 Cascaded Rings for Characterising Biological and Molecular Monolayers 137
6.4.1 Control Experiment: Adsorption of BSA on a Silicon Surface 138
6.4.2 Characterisation of a MPTS SAM 139
6.4.3 Characterisation of an Affimers Biolayer 141
6.5 Dual-Mode Analysis of Electroactive Hairpin Shaped DNA Strands Conformational Changes 143
6.5.1 Hairpin Shaped DNA Strands 143
6.5.2 Dual-Mode Interrogation 144
6.6 Comparison to Similar Approaches 150
6.7 Conclusions 150
References 151
7 Conclusions and Outlook 153
7.1 Summary and Conclusions 153
7.2 Outlook 155
References 156
Curriculum Vitae 157
Conferences and Publications 158
Awards 159

Erscheint lt. Verlag 18.7.2017
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XV, 149 p. 105 illus., 89 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Electro-photonic Biosensor • Multiplexed DNA Detection • Photonic Biosensing • Quantifying biomolecular layers • Ring Resonators Biosensors • Silicon Biosensing
ISBN-10 3-319-60501-1 / 3319605011
ISBN-13 978-3-319-60501-2 / 9783319605012
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99