Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications (eBook)

Jing Zhang, Yeon-Gil Jung (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2018
XII, 286 Seiten
Springer International Publishing (Verlag)
978-3-319-59906-9 (ISBN)

Lese- und Medienproben

Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book explores the recent developments, perspectives on future research, and pertinent data from academia, industry, and government research laboratory to discuss fundamental mechanisms as well as processing and applications of advanced metallic and ceramic thin film and coating materials for energy and environmental applications. It is a platform to disseminate the latest research progress related to processing, characterization, and modelling. The authors address both thermal barrier and environmental coatings; magnetic and thermoelectric materials; and solar cell and solid oxide fuel cell materials. It is appropriate supplementary reading for students and primary reading for researchers in materials science and engineering. 

Dr. Jing Zhang is Associate Professor of Mechanical Engineering at Indian University - Purdue University Indianapolis (IUPUI). Prior to this, he was Assistant Professor of Mechanical Engineering at the University of Alaska Fairbanks (UAF) between 2005-2011. He received his B.S. degree in Metal Forming from University Science and Technology Beijing in 1996, and his M.S. in Manufacturing Engineering from Beijing University of Aeronautics and Astronautics China in 1999. He earned his Ph.D. in Materials Science and Engineering from Drexel University in 2004. He also received postdoctoral research training in the FOCUS Center at Rensselaer Polytechnic Institute (RPI) between 2004 -2005. His current research interests include renewable energy materials and additive manufacturing, with a focus on process-structure-property relationship and processing modeling. Dr. Zhang's research has been supported by the U.S. Department of Energy, Air Force Research Laboratory, National Science Foundation, National Aeronautics and Space Administration, and other funding agencies.

Dr. Yeon-Gil Jung is Professor of School of Materials Science and Engineering at Changwon National University, Republic of Korea. He also serves as the Vice President of the Korean Ceramic Society. He received his B.S, M.S, and Ph.D. degrees from Hanyang University, Republic of Korea. After that, he studied material property evaluation using Hertzian Indentation at NIST (National Institute Standard and Technology) with Dr. Brian Lawn during 1997-1999. He joined Changwon National University in 1999. He has been a visiting scholar and research professor since 2013 at Indiana University - Purdue University Indianapolis. His recent research is focused on Microstructure Design and Properties Evaluation in Thermal Barrier Coatings (TBCs) and Development and Fabrication Process of Ceramic Core using Organic/Inorgainc Binder System. He has published 200+ papers and 50+ patents related to the materials science and engineering. He was awarded 'Progress in Academics' in 2001, and 'Progress in Technology' in 2007 by the Korean Ceramic Society, and 'A Governor Citation' in 2013 by the Gyeongsangnam-do governor.

Dr. Jing Zhang is Associate Professor of Mechanical Engineering at Indian University – Purdue University Indianapolis (IUPUI). Prior to this, he was Assistant Professor of Mechanical Engineering at the University of Alaska Fairbanks (UAF) between 2005-2011. He received his B.S. degree in Metal Forming from University Science and Technology Beijing in 1996, and his M.S. in Manufacturing Engineering from Beijing University of Aeronautics and Astronautics China in 1999. He earned his Ph.D. in Materials Science and Engineering from Drexel University in 2004. He also received postdoctoral research training in the FOCUS Center at Rensselaer Polytechnic Institute (RPI) between 2004 -2005. His current research interests include renewable energy materials and additive manufacturing, with a focus on process-structure-property relationship and processing modeling. Dr. Zhang’s research has been supported by the U.S. Department of Energy, Air Force Research Laboratory, National Science Foundation, National Aeronautics and Space Administration, and other funding agencies.Dr. Yeon-Gil Jung is Professor of School of Materials Science and Engineering at Changwon National University, Republic of Korea. He also serves as the Vice President of the Korean Ceramic Society. He received his B.S, M.S, and Ph.D. degrees from Hanyang University, Republic of Korea. After that, he studied material property evaluation using Hertzian Indentation at NIST (National Institute Standard and Technology) with Dr. Brian Lawn during 1997-1999. He joined Changwon National University in 1999. He has been a visiting scholar and research professor since 2013 at Indiana University - Purdue University Indianapolis. His recent research is focused on Microstructure Design and Properties Evaluation in Thermal Barrier Coatings (TBCs) and Development and Fabrication Process of Ceramic Core using Organic/Inorgainc Binder System. He has published 200+ papers and 50+ patents related to the materials science and engineering. He was awarded "Progress in Academics" in 2001, and "Progress in Technology" in 2007 by the Korean Ceramic Society, and “A Governor Citation” in 2013 by the Gyeongsangnam-do governor.

Preface 5
Acknowledgements 6
Contents 7
Contributors 8
Chapter 1: Overview of Advanced Ceramic and Metallic Coating for Energy and Environmental Applications 10
1.1 Introduction 10
1.2 Thermal Barrier Coating (TBC) 11
1.2.1 Overview of TBC 11
1.2.2 Current Research Status of TBC 15
1.2.2.1 Research Background 15
1.2.2.2 TBC Materials 15
1.2.2.3 Structure of TBC 16
1.2.3 Material Selection for TBC 16
1.2.3.1 Ceramic Material for Top Coat 17
1.2.3.2 Intermetallic Material for Bond Coat 19
1.2.4 Fabrication Method of TBC 20
1.2.4.1 EB-PVD Process 21
1.2.4.2 APS Process 21
1.2.4.3 HVOF Process 23
1.2.4.4 LPPS Process 24
1.2.5 Advanced Thermal Barrier Coatings 25
1.2.5.1 Rare-Earth Oxides 25
1.2.5.2 Lanthanum Hexaaluminate (LHA) 26
1.2.5.3 La2Ce2O7 (LC) 27
1.2.5.4 Graded TBC 27
1.3 Environmental Barrier Coating (EBC) 28
1.3.1 Overview of EBC 28
1.3.2 Development of EBC 29
1.3.3 EBC Materials 31
References 31
Chapter 2: Processing and Characterization of Coating and Thin Film Materials 35
2.1 Introduction 35
2.2 Coating Surface and Interface Modifications 36
2.2.1 Chemical Treatments 37
2.2.2 Mechanical Treatments 37
2.2.3 Incorporation of Additional Intermediate Layer 39
2.3 Processing of Advanced Metallic and Ceramic Composite Laminate Coatings 46
2.3.1 Advances in Pd-Based Composite Film Preparation 47
2.3.2 Alternative Materials to Metallic Thin Films 54
2.4 Characterization Techniques 55
2.4.1 Optical Microscopy and Profilometry 56
2.4.2 Scanning Electron Microscopy 56
2.4.3 Auger Electron Spectroscopy 60
2.4.4 Atomic Force Microscopy 61
2.4.5 Mercury Porosimetry 61
2.4.6 X-Ray Diffraction 62
2.4.7 X-Ray Photoelectron Spectroscopy 63
2.4.8 Gravimetric Analysis 65
2.4.9 Mechanical Resistance and Adherence 65
2.4.10 Gas Permeation Measurements 67
References 71
Chapter 3: Magnetic Thin Film Materials: Magnetic Particles Synthesized by Thin Film Dewetting for Energy Applications 81
3.1 Introduction 81
3.1.1 Solid State Dewetting 83
3.2 Experimental Approach 86
3.3 Experimental Data and Discussion 88
3.3.1 Experiments on HOPG 89
3.3.2 Experiments on Drop-Cast CNT 90
3.3.3 Variation of Initial Thin Film Thickness 93
3.3.4 Application of External Magnetic Field 95
3.4 Future Works and Conclusion 97
References 97
Chapter 4: Defects Engineering for Performing SrTiO3-Based Thermoelectric Thin Films: Principles and Selected Approaches 99
4.1 Introduction 99
4.1.1 Background: Thermoelectric Materials and Applications 99
4.1.2 Oxide Thermoelectrics and Strontium Titanate 101
4.1.3 SrTiO3-Based Thermoelectric Thin Films 102
4.2 Methods 104
4.2.1 Processing of the Samples 104
4.2.2 Structural and Microstructural Characterization 104
4.2.3 Evaluation of the Electrical Properties 105
4.2.4 Studies of the Thermal Transport 106
4.3 Results and Discussion 106
4.3.1 Guidelines for Defects Engineering Strategies 106
4.3.2 Structural and Microstructural Features 110
4.3.3 Structural Defects vs. Electrical Performance: The Case Studies 115
4.3.4 Lattice Thermal Conductivity and Overall Performance 119
4.4 Summary and Outlook 124
References 125
Chapter 5: Microwave-Processed Copper Zinc Tin Sulphide (CZTS) Inks for Coatings in Solar Cells 129
5.1 Introduction 129
5.2 Inks for Coatings 131
5.2.1 CZTS Nanoparticles Ink 133
5.3 Microwave Processing of Inks 138
5.3.1 Basis for Development of CZTS Ink 140
5.3.2 Synthesis of Micropowder 141
5.3.3 Microparticle Ink 142
5.3.4 Nanoparticle Ink 144
5.3.5 Characterizations 145
5.4 Issues in CZTS 146
5.4.1 Detrimental Phases 146
5.4.2 Defects 148
5.5 Properties of Inks 150
5.5.1 Structural, Morphological and Optical Properties of Micropowder 150
5.5.2 Structural and Morphological Properties of Microparticles Ink 153
5.5.3 Characterizations of Nanoparticles Ink 156
5.6 Doctor Blade Coating of Films 158
5.6.1 Doctor Blade Coating 158
5.7 CZTS Coating with Microwave-Processed Inks and Properties 161
5.7.1 Films Coated from Micro Ink 161
5.7.2 Films from Nano Ink 164
5.8 Electrical Properties 171
5.8.1 Electrical Properties in Dark (~300 K) 171
5.8.2 Temperature Variation Electrical Conductivity of NPI Coated CZTS Films: 77-500 K 172
5.9 Solar Cells with CZTS Coatings 176
5.9.1 Basic Structure 177
5.9.2 Device Efficiency 178
5.10 Concluding Remarks and Future Prospects 179
References 180
Chapter 6: Solid Oxide Fuel Cell Materials 183
6.1 Introduction 183
6.2 Electrode 185
6.2.1 K2NiF4-Type Layered Perovskites with a High Oxygen Mobility 189
6.2.2 Double-Layered Perovskite with High Reversible Phase Switching 191
6.2.3 Intelligent Switching Electrode 195
6.2.4 Exsolution in the Perovskite 197
6.2.5 Development of Porous Cathode Coating Using an Aerosol Deposition Process 199
6.2.6 Antioxidant Coating for Metallic Interconnect Using the AD Process 201
6.3 Electrolyte 203
6.3.1 Development of an Electrolyte Coating Using the Aerosol Deposition Process 203
6.3.2 Zr1-xMxO2-delta (M = Y, Sc) Electrolyte Films via EB-PVD Coating 206
6.3.3 Bilayer Electrolyte Fabrication and Performance 208
6.4 Conclusion 216
References 216
Chapter 7: Metallic Coatings in Solid-Phase Microextraction: Environmental Applications 224
7.1 Introduction 224
7.2 Synthesis and Development of Metallic SPME Coatings 226
7.2.1 Metal Nanoparticles-Based SPME Coatings 232
7.2.2 Metal Oxides Nanoparticles-Based SPME Coatings 233
7.2.3 Hybrid-based SPME Coatings 234
7.3 Characterization of Coatings 237
7.4 Environmental Applications 240
7.5 Concluding Remarks 247
References 247
Chapter 8: Different Approaches for Thin Film Solar Cell Simulation 251
8.1 Introduction 251
8.2 Routes for Modeling Cu2ZnSn(S,Se)4 Solar Cells 253
8.2.1 Fitting Method 253
8.2.2 wxAMPS Software 255
8.2.3 SCAPS Software 256
8.2.4 Sentaurus Software 256
8.2.5 Tunneling Enhanced Recombination and Kesterite/Buffer Interface Recombination as Possible Causes of High Open-Circuit Vo... 257
8.2.5.1 From MQWSC to KestTFSC Software 257
8.2.5.2 KestTFSC Software for Modeling Kesterite Solar Cells 258
Different Loss Mechanisms 260
Diffusion 261
Thermionic Emission 262
Radiative Recombination 262
Non-radiative Recombination 262
Trap-Assisted Tunneling Recombination 263
CdS/Kesterite Interface Recombination 264
Model Parameters 265
Comparing Model Outcomes with Experimental Data 267
EQE Data 267
Study of Loss Mechanisms Impact on Solar Cell Performance 268
The Path Towards a Further Kesterite Solar Cell Efficiency Improvement 270
CZTS Solar Cell 270
CZTSe Solar Cells 279
8.3 Summary 287
References 288

Erscheint lt. Verlag 16.7.2017
Zusatzinfo XII, 286 p. 156 illus., 101 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Ceramics • Coating surface • Composite and laminate coatings • Environmental coatings • Interface modifications • Magnetic metals and alloys • Photoelectrochemical device materials • Photothermal device materials • Solar cells • Solid Oxide Fuel Cells • Thermal Barrier Coatings
ISBN-10 3-319-59906-2 / 3319599062
ISBN-13 978-3-319-59906-9 / 9783319599069
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99