Anisotropic and Shape-Selective Nanomaterials (eBook)

Structure-Property Relationships
eBook Download: PDF
2017 | 1st ed. 2017
X, 470 Seiten
Springer International Publishing (Verlag)
978-3-319-59662-4 (ISBN)

Lese- und Medienproben

Anisotropic and Shape-Selective Nanomaterials -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book reviews recent advances in the synthesis, characterization, and physico-chemical properties of anisotropic nanomaterials. It highlights various emerging applications of nanomaterials, including sensing and imaging, (bio)medical applications, environmental protection, plasmonics, catalysis, and energy. It provides an excellent and comprehensive overview of the effect that morphology and nanometric dimension has on the physico-chemical properties of various materials and how this leads to novel applications.



Prof. Dr. Simona Hunyadi Murph is an internationally recognized expert in the fields of nanoscience and nanotechnology. Dr. Murph is a Principal Scientist in the National and Homeland Security Directorate at Savannah River National Laboratory (SRNL) and an Adjunct Professor at the Department of Physics and Astronomy, the University of Georgia (UGA), USA. She is the founder and manager of the SRNL's Group for Innovation and Advancements in NanoTechnology Sciences (GIANTS) program, which is intended to advance young scholars' knowledge and skills in the many fields of nanoscience. Her group's research focuses on the design and control of fabrication for colloidal materials with functional properties for sensing and imaging, catalysis, bio-medical and environmental applications, plasmonics, energy conversion and storage. The remarkable advances made by Dr. Murph and her team in the field of nanotechnology have led to numerous publications, awards, grants, invention disclosures, and patents. She holds a PhD in Chemistry/Nanotechnology from the University of South Carolina, USA, an Education Specialist/Educational Leadership (EdS) degree from Augusta University, USA, and both a Master of Science (MS) in Chemistry and Bachelor of Science (BS) in Chemistry/Physics with a minor in Education from Babes-Bolyai University in Romania.

Dr. George K. Larsen is a Senior Scientist at the Savannah River National Laboratory (SRNL). After receiving a Bachelor of Arts (BA) and Bachelor of Science (BS) in Philosophy and Physics from Piedmont College, USA, Dr. Larsen attended the University of Georgia, earning a PhD in Physics. Dr. Larsen's research concentrates on the properties and applications of nanostructures, covering a range of topics from clean energy to the electrical properties of tilted nanorod arrays. At the SRNL, Dr. Larsen's work focuses on the exploitation of nanostructures for remote heat generation, photocatalysis, hydrogen production, and radiation safety, among others.

Dr. Kaitlin J. Coopersmith is a Senior Scientist at the Savannah River National Laboratory in Aiken, SC, USA. She received her PhD in Chemistry from Syracuse University, USA and her Bachelor of Science (BS) in Chemistry from the State University of New York at Potsdam. Her research interests include the synthesis and functionalization of metal and semiconductor nanoparticles for sensing, drug delivery, energy transfer, gas adsorption, and alternative heating mechanisms.

​Prof. Dr. Simona Hunyadi Murph is an internationally recognized expert in the fields of nanoscience and nanotechnology. Dr. Murph is a Principal Scientist in the National and Homeland Security Directorate at Savannah River National Laboratory (SRNL) and an Adjunct Professor at the Department of Physics and Astronomy, the University of Georgia (UGA), USA. She is the founder and manager of the SRNL’s Group for Innovation and Advancements in NanoTechnology Sciences (GIANTS) program, which is intended to advance young scholars’ knowledge and skills in the many fields of nanoscience. Her group’s research focuses on the design and control of fabrication for colloidal materials with functional properties for sensing and imaging, catalysis, bio-medical and environmental applications, plasmonics, energy conversion and storage. The remarkable advances made by Dr. Murph and her team in the field of nanotechnology have led to numerous publications, awards, grants, invention disclosures, and patents. She holds a PhD in Chemistry/Nanotechnology from the University of South Carolina, USA, an Education Specialist/Educational Leadership (EdS) degree from Augusta University, USA, and both a Master of Science (MS) in Chemistry and Bachelor of Science (BS) in Chemistry/Physics with a minor in Education from Babes-Bolyai University in Romania.Dr. George K. Larsen is a Senior Scientist at the Savannah River National Laboratory (SRNL). After receiving a Bachelor of Arts (BA) and Bachelor of Science (BS) in Philosophy and Physics from Piedmont College, USA, Dr. Larsen attended the University of Georgia, earning a PhD in Physics. Dr. Larsen’s research concentrates on the properties and applications of nanostructures, covering a range of topics from clean energy to the electrical properties of tilted nanorod arrays. At the SRNL, Dr. Larsen’s work focuses on the exploitation of nanostructures for remote heat generation, photocatalysis, hydrogen production, and radiation safety, among others.Dr. Kaitlin J. Coopersmith is a Senior Scientist at the Savannah River National Laboratory in Aiken, SC, USA. She received her PhD in Chemistry from Syracuse University, USA and her Bachelor of Science (BS) in Chemistry from the State University of New York at Potsdam. Her research interests include the synthesis and functionalization of metal and semiconductor nanoparticles for sensing, drug delivery, energy transfer, gas adsorption, and alternative heating mechanisms.

Preface 6
Contents 8
About the Editors 10
Introduction and Fundamentals 12
1 An Introduction to Nanotechnology 13
Abstract 13
References 15
2 Nanoscale Materials: Fundamentals and Emergent Properties 16
Abstract 16
2.1 Introduction 16
2.1.1 Dimensionality and Optical Properties 17
2.1.2 Polarization and Anisotropy 21
2.1.3 Crystalline Anisotropy 24
2.1.4 Anisotropic Nanoparticle Structures 27
2.1.4.1 Spheres 28
2.1.4.2 Rods, Wires and Tubes 29
2.1.4.3 Cubes, Hexagons, Triangles 30
2.1.4.4 Branched and Other Shapes 31
2.2 Conclusions 33
References 33
3 Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials 38
Abstract 38
3.1 Introduction 38
3.1.1 Bottom-Up Fabrication: The Chemical Approach 40
3.1.1.1 Overview 40
3.1.1.2 Chemical Reduction 41
3.1.1.3 Seed Mediated Approach 43
3.1.2 Solvothermal and Hydrothermal Synthesis 55
3.1.2.1 Microwave Irradiation 55
3.1.3 Self-assembly 56
3.2 Top-Down Fabrication: The Engineering Approach 59
3.2.1 Overview 59
3.2.2 Nano-Lithography 60
3.2.2.1 Photolithography 60
3.2.2.2 Scanning Beam Lithography 62
3.2.2.3 Scanning Probe Lithography 64
3.2.3 Pattern Transfer and Templates 65
3.2.3.1 Nanosphere Lithography 66
3.2.3.2 Spontaneously and Naturally Occurring Templates 67
3.2.4 Thin Film Growth 68
3.2.4.1 Physical Vapor Deposition 68
3.2.4.2 Chemical Vapor Deposition 69
3.3 Classification 71
3.3.1 Metal and Metal Oxides 71
3.3.2 Semiconductor Nanostructures 74
3.3.3 Hybrid Nanostructures 75
3.3.4 Carbon Nanostructures 76
3.4 Conclusions 77
References 78
4 Characterization of Anisotropic and Shape-Selective Nanomaterials: Methods and Challenges 87
Abstract 87
4.1 Overview 87
4.2 Structural and Chemical Characterization 88
4.2.1 Microscopy 88
4.2.2 Diffraction and Scattering Techniques 91
4.2.2.1 Dynamic Light Scattering 91
4.2.2.2 X-ray Scattering and Diffraction 92
4.2.2.3 Electron Diffraction 94
4.2.3 Spectroscopic Techniques 95
4.2.3.1 Optical Spectroscopy 96
4.2.3.2 Polarization-Dependent Measurements 98
4.2.3.3 Other Spectroscopies 101
4.3 “Bulk” Property Characterization 101
4.4 Conclusion 103
References 103
Effect of the Morphology and the Nanometric Dimension of Materials on Their Physico-Chemical Properties 110
5 Anisotropic Metallic and Metallic Oxide Nanostructures-Correlation Between Their Shape and Properties 111
Abstract 111
5.1 Sensing and Optical Imaging 111
5.1.1 Sensing via Inelastic Light Scattering-Surface-Enhanced Raman Scattering 113
5.1.2 Sensing Based on Surface-Enhanced Fluorescence (SEF) 118
5.1.3 Sensing Based on Nanoparticle’s Aggregation-Colorimetric Sensors 120
5.1.4 Sensing Based on Plasmon Shifts with Local Refractive Index 122
5.2 Medical and Biological Applications 123
5.2.1 Metallic Nanostructures 124
5.2.2 Non-metallic Nanostructures 129
5.3 Catalysis and Electrocatalysis 130
5.4 Environmental Applications 134
5.4.1 Detection and Sequestration of Environmental Contaminants 135
5.4.2 Detection and Destruction of Environmental Contaminants 136
5.5 Energy Related Applications 139
5.5.1 Conversion of Solar Energy to Fuel 139
5.5.2 Energy Storage Materials 144
5.6 Photothermal Applications 145
5.7 Self-assembled Nanostructures 147
5.8 Conclusions 150
References 150
6 Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors 158
Abstract 158
6.1 Introduction 158
6.2 Synthetic Nanomotor Design 161
6.2.1 Synthesis and Characterization 161
6.2.2 Efficiency 162
6.3 Propulsion Routes 163
6.3.1 External Propulsion 163
6.3.1.1 Acoustic 163
6.3.1.2 Optical 165
6.3.1.3 Magnetic 166
6.3.2 Chemical Propulsion 166
6.3.2.1 Diffusiophoresis 167
6.3.2.2 Bubble Propulsion 169
6.3.3 Multiple Energy Sources 170
6.3.4 Conclusions and Future Outlook 171
References 171
7 Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches 174
Abstract 174
7.1 Overview 175
7.2 Influence of Shape on Electronic Properties of Colloidal Nanocrystals 176
7.3 Mechanisms of Anisotropic Growth and Erosion 178
7.4 Enforcing Isotropic Growth with Alternating Layer Approaches 182
7.5 Methods 184
7.5.1 Colloidal SILAR (Homogeneous Solution) 184
7.5.2 Colloidal “Atomic Layer Deposition” 185
7.6 Precursors 186
7.7 Analysis of the SILAR Mechanism in Colloidal NC Processes 194
7.7.1 Dose Dependence in c-SILAR 197
7.7.2 Solvent Dependence of Precursor Conversion in c-SILAR 200
7.7.3 Electrochemical In Situ Monitoring 204
7.7.4 XPS Monitoring 205
7.8 Rational Construction of Anisotropic Colloidal Nanocrystals with Alternating Layer Approaches 206
7.9 Alternating Layer Growth on Supported Nanostructures 207
7.10 Alternating Layer Growth on Anisotropic Colloidal Nanocrystal Cores 210
7.10.1 Wurtzite Nanorods 211
7.10.2 Colloidal Nanoplatelets with Wurtzite Structure 214
7.10.3 Colloidal Nanoplatelets with Zincblende Structure 215
7.10.4 Colloidal Nanowires 216
7.11 Regioselective Growth Under SILAR Conditions 218
7.11.1 Regioselective Growth Under Saturating Conditions 219
7.11.2 Shape Control Via Reagent Dosing 219
7.12 Applications 221
7.12.1 Double Quantum Dots and Related Dual-Emission Structures for Temperature Measurement and Upconversion 222
7.12.2 Cell Membrane Voltage Sensing 223
7.12.3 Fluorescence Anisotropy in 1D and 2D Nanocrystals 224
7.13 Concluding Remarks 226
References 227
8 Plasmon Drag Effect. Theory and Experiment 238
Abstract 238
8.1 Introduction 238
8.2 Experiment 243
8.2.1 Photoinduced Electric Effects in Flat Metal Films 243
8.2.2 Experiment. PLDE in Nanostructured Films 246
8.2.3 Effect of Highly Nonhomogeneous Illumination 250
8.3 PLDE Theory 252
8.3.1 Macroscopic Forces Acting on Polarized Matter 252
8.3.2 The Quantum Aspect of Relationship Between PLDE Emf and Absorption 254
8.3.3 Kinetic Renormalization of PLDE 254
8.3.4 PLDE in Flat Metal Films in Kretschmann Geometry 256
8.3.5 PLDE in Metal Films of Modulated Profile 259
8.3.6 PLDE in Nanostructures 261
8.3.6.1 SPIDEr in Metal Nanowires 263
SPIDEr as a THz Source 264
SPIDEr as a Femtosecond Detector 267
8.3.6.2 “Batteries” Model Based on Nonlinearity of Metal and Asymmetric Boundary Conditions 268
8.4 Conclusions 270
References 270
9 Dimensional Variations in Nanohybrids: Property Alterations, Applications, and Considerations for Toxicological Implications 276
Abstract 276
9.1 Introduction 277
9.2 Dimensional Variations in Nanohybrids: Altered Properties and Applications 278
9.3 Nano-Bio Interactions of Nanohybrids: Importance of Dimensionality 285
9.4 Environmental and Toxicological Significance 290
9.5 Conclusions 290
Acknowledgements 291
References 291
10 Assemblies and Superstructures of Inorganic Colloidal Nanocrystals 297
Abstract 297
10.1 Introduction 297
10.2 Forces at Nanoscale 299
10.2.1 Van der Waals Interactions 300
10.2.1.1 Examples of Nanoparticle Self-assemblies 301
10.2.2 Induced Self-assembly 301
10.2.3 Electrostatic Interactions 303
10.2.3.1 Examples of Self-assembly of Nanoparticles 303
10.2.4 Magnetic Interactions 304
10.2.5 Superficial Forces 307
10.3 The Functionality of Nanoparticle Superstructures 307
10.3.1 Mechanical Strength 308
10.3.2 Photoluminescence 309
10.3.3 Catalysis 309
10.3.4 Plasmonics 311
10.3.5 Surface Enhanced Raman Spectroscopy (SERS) 312
10.4 Superlattice Formation 313
10.4.1 Nanocubes 314
10.4.2 Nano-octahedra 314
10.4.3 Nanoplates and Nanostars 314
10.4.4 Nanorods 315
10.5 Methods Used for the Directed Assembly of Nanoparticles 316
10.5.1 The Langmuir-Blodgett (LB) Method 316
10.5.2 Ligand Stabilization 320
10.5.3 The Solvent Evaporation Technique 322
10.5.4 The DNA-Template Method 325
10.5.5 Template Assembly 327
10.5.6 The Sedimentation Method 327
10.5.7 Pressure Induced Growth 328
10.5.8 Light-Induced Assembly 329
10.6 Conclusions and Perspectives 330
Bibliography 331
11 Nanostructured Catalysts for the Electrochemical Reduction of CO2 340
Abstract 340
11.1 Introduction 341
11.1.1 Background 341
11.1.2 Bulk Metal Catalysts for CO2 Reduction 342
11.1.3 Nanostructured Metal Catalysts for CO2 Reduction 345
11.2 Nanostructured Metal Catalysts for CO2 Reduction to CO 345
11.2.1 Nanostructured Au 346
11.2.1.1 Au Nanoparticles 346
11.2.1.2 Au Nanowires 347
11.2.2 Nanostructured Ag 348
11.2.2.1 Ag Nanoparticles 350
11.2.2.2 Nanoporous Ag 351
11.2.3 Nanostructured Zn 352
11.2.4 Nanostructured Pd 353
11.2.5 Metal Organic Frameworks 353
11.3 Nanostructured Metal Catalysts for CO2 Reduction to Hydrocarbons 354
11.3.1 Cu Nanoparticles 355
11.3.2 Cu Nanowires 356
11.3.3 Cu Nanofoam 358
11.4 Oxide-Derived Metallic Nanocatalysts for CO2 Reduction 359
11.4.1 Oxide-Derived Cu 360
11.4.2 Oxide-Derived Au 361
11.4.3 Oxide-Derived Pb 362
11.4.4 Oxide-Derived Ag 363
11.5 Bimetallic Nanocatalysts 364
11.6 Nano Carbon Catalysts 366
11.7 Summary and Outlook 371
References 372
12 Strategies for the Synthesis of Anisotropic Catalytic Nanoparticles 377
Abstract 377
12.1 Introduction 377
12.2 Synthesis of Catalytic Nanoparticles 379
12.2.1 Seed Mediated Growth 379
12.2.2 Template Mediated Growth 383
12.2.3 Thermal Decomposition 386
12.2.4 Electrochemical and Galvanic Replacement 388
12.3 Anisotropic Metal Nanoparticles Catalytic Applications 390
12.3.1 Catalytic Applications 390
12.3.2 Bimetallic Anisotropic Nanoparticles 393
12.4 Conclusion 394
References 395
13 Biomedical Applications of Anisotropic Gold Nanoparticles 401
Abstract 401
13.1 Introduction 402
13.2 Synthesis of Gold Nanorods 405
13.2.1 Synopsis 405
13.2.2 Historical Synthetic Approaches 405
13.2.3 New Approaches to Nanorod Syntheses Via a Seed-Mediated Approach 406
13.2.3.1 Secondary Growth 406
13.2.3.2 Pre-reduction with Salicylic Acid 408
13.2.3.3 Overgrowth of Gold Nanorods Via a Binary Surfactant Mixture 410
13.2.3.4 Improved Conversion of HAuCl4 into Gold Nanorods Via Re-seeding Approach 411
13.3 Functionalization of Gold Nanoparticles 412
13.3.1 Synopsis 412
13.3.2 Functionalization Using Capping Ligand 413
13.3.3 Functionalization Using Biomolecules 414
13.3.3.1 Oligonucleotides 414
13.3.3.2 Antibodies 415
13.3.3.3 Peptides 417
13.4 Plasmonic Photothermal Therapy 418
13.4.1 Synopsis 418
13.4.2 Optical Properties 419
13.4.2.1 Surface Plasmon Resonance SPR 419
13.4.2.2 Tunability of Optical Properties 419
13.4.3 Targeting 421
13.4.4 Examples 422
13.4.4.1 Gold Nanocages in the Photothermal Ablation of Breast Cancer 422
13.4.4.2 Gold Nanorods in the Photothermal Ablation of Squamous Cell Carcinoma 423
13.5 Conclusion 424
References 425
14 Application of Gold Nanorods in Cardiovascular Science 429
Abstract 429
14.1 Introduction 429
14.2 Application of Gold Nanorods as Agents to Detect Cardiovascular Disease 430
14.3 Gold Nanorods as Reporters of Material Deformation and Mechanical Environment 433
14.4 Using Gold Nanorods to Direct Cell Behavior 434
14.5 Using Gold Nanorods to Alter the Material Properties of Cardiac Valves 437
14.6 Conclusions and Future Directions 440
Acknowledgements 440
References 441
15 Architectured Nanomembranes 445
Abstract 445
15.1 Introduction 445
15.2 Synthesis Methodologies 447
15.3 Experimental 449
15.3.1 Production of Titania Nanotube Membranes 449
15.3.2 Production of Nanoporous Glass Membranes 450
15.4 Results and Discussion 451
15.5 Conclusion 462
Acknowledgements 463
References 463
Summary and Final Thoughts 468
Index 470

Erscheint lt. Verlag 14.7.2017
Reihe/Serie Nanostructure Science and Technology
Zusatzinfo X, 470 p. 228 illus., 160 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik
Schlagworte Anisotropic Catalytic Nanoparticles • Anisotropic Gold Nanoparticles • Anisotropic Nanomaterial • Architectured Nanomembranes • Biological Applications of Nanomaterial • Catalytic Applications of Nanomaterials • Colloidal Nanocrystals • Morphology and Nanometric Dimension of Materials • Nanostructured Catalysts • Plasmonic and Electronic Applications of Nanomaterials • Shape-selective Nanomaterial
ISBN-10 3-319-59662-4 / 3319596624
ISBN-13 978-3-319-59662-4 / 9783319596624
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald …

eBook Download (2022)
Carl Hanser Fachbuchverlag
69,99