Nanotechnology -

Nanotechnology (eBook)

An Agricultural Paradigm
eBook Download: PDF
2017 | 1st ed. 2017
VIII, 371 Seiten
Springer Singapore (Verlag)
978-981-10-4573-8 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book highlights the implications of nanotechnology and the effects of nanoparticles on agricultural systems, their interactions with plants as well as their potential applications as fertilizers and pesticides. It also discusses how innovative, eco-friendly approaches to improve food and agricultural systems lead to increased plant productivity. Further, it offers insights into the current trends and future prospects of nanotechnology along with the benefits and risks and their impact on agricultural ecosystems.

Nanomaterials in agriculture reduce the amount of chemical products sprayed by means of smart delivery of active ingredients; minimize nutrient losses in fertilization; and increase yields through optimized water and nutrient management. There is also huge potential for nanotechnology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society, both today and in the future.



Dr. Ram Prasad is Assistant Professor at the Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India. His research interest includes plant-microbe-interactions, sustainable agriculture and microbial nanobiotechnology. Dr. Prasad has more than hundred publications to his credit, including research papers & book chapters and five patents issued or pending, and edited or authored several books. Dr. Prasad has eleven years of teaching experience and he has been awarded the Young Scientist Award (2007) and Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB fellowship (2010) by the Society for Applied Biotechnology; Outstanding Scientist Award (2015) in the field of Microbiology by Venus International Foundation; and the American Cancer Society UICC International Fellowship for Beginning Investigators (USA, 2014). In 2014-2015, Dr. Prasad served as Visiting Assistant Professor in the Department of Mechanical Engineering at Johns Hopkins University, USA.

Dr. Manoj Kuma
r is a scientist with sanguine behavior who is adoring about research and development, with a commitment to lifelong learning. He is determined on high quality science that contributes broadly to both increasing intellectual knowledge of plant development and to increasing the ecological niche. He has a high level of professional desire and intellectual hunt, and the potential to fulfil the dream of his high impact publications and the future recognition of these by academic peers. Dr. Kumar has pursued his PhD in Plant Biotechnology from prestigious Jawaharlal Nehru University and then awarded two postdocotoral fellowships consecutively: i) DBT-PDF from IISc Bangalore in 2005 and then NRF-PDF from University of Pretoria. Dr. Manoj Kumar is a researcher of Plant Biotechnology in the Division of Microbial Technology at the Amity University Uttar Pradesh, India. He referees for many more, including Phytoremediation, Journal of Soil Sediments and many more. Dr. Kumar's research is the integration of microbial genetics with a breadth of plant physiological approaches to enable novel gene discovery and conferring metabolites.

Dr. Vivek Kumar is a scientist with involved in teaching, research and guidance, with a pledge to enduring knowledge. Dr. Kumar is working in the Institute of Microbial Technology at Amity University Uttar Pradesh, Noida, India. He obtained his masters and doctoral degree from CCS Haryana Agricultural University, Hisar, Haryana, India. He is serving in Editorial board of reputed international journals viz. Environment Asia, International Journal of Biological & Chemical Sciences, Journal of Advanced Botany and Zoology, Journal of Ecobiotechnology. He is also reviewer of Journal of Hazardous Materials, Science International, Acta Physiologiae Plantarum, Int. Research Journal of Plant Sciences, Int. J. Microbiology, African J Microbiology Research, Journal of Microbiology and Antimicrobials, Environment Science & Pollution Research, Rhizosphere. He has published 61 research papers, 19 book chapters, six review articles and two books. Dr. Kumar has also served as Microbiologist for eight years in Department of Soil and Water Research, Public Authority of Agricultural Affairs & Fish Resources, Kuwait. Dr. Kumar has organized number of conferences/workshops as convener/ organizing secretary.



This book highlights the implications of nanotechnology and the effects of nanoparticles on agricultural systems, their interactions with plants as well as their potential applications as fertilizers and pesticides. It also discusses how innovative, eco-friendly approaches to improve food and agricultural systems lead to increased plant productivity. Further, it offers insights into the current trends and future prospects of nanotechnology along with the benefits and risks and their impact on agricultural ecosystems.Nanomaterials in agriculture reduce the amount of chemical products sprayed by means of smart delivery of active ingredients; minimize nutrient losses in fertilization; and increase yields through optimized water and nutrient management. There is also huge potential for nanotechnology in the provision of state-of-the-art solutions for various challenges faced by agriculture and society, both today and in the future.

Dr. Ram Prasad is Assistant Professor at the Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India. His research interest includes plant-microbe-interactions, sustainable agriculture and microbial nanobiotechnology. Dr. Prasad has more than hundred publications to his credit, including research papers & book chapters and five patents issued or pending, and edited or authored several books. Dr. Prasad has eleven years of teaching experience and he has been awarded the Young Scientist Award (2007) and Prof. J.S. Datta Munshi Gold Medal (2009) by the International Society for Ecological Communications; FSAB fellowship (2010) by the Society for Applied Biotechnology; Outstanding Scientist Award (2015) in the field of Microbiology by Venus International Foundation; and the American Cancer Society UICC International Fellowship for Beginning Investigators (USA, 2014). In 2014-2015, Dr. Prasad served as Visiting Assistant Professor in the Department of Mechanical Engineering at Johns Hopkins University, USA.Dr. Manoj Kumar is a scientist with sanguine behavior who is adoring about research and development, with a commitment to lifelong learning. He is determined on high quality science that contributes broadly to both increasing intellectual knowledge of plant development and to increasing the ecological niche. He has a high level of professional desire and intellectual hunt, and the potential to fulfil the dream of his high impact publications and the future recognition of these by academic peers. Dr. Kumar has pursued his PhD in Plant Biotechnology from prestigious Jawaharlal Nehru University and then awarded two postdocotoral fellowships consecutively: i) DBT-PDF from IISc Bangalore in 2005 and then NRF-PDF from University of Pretoria. Dr. Manoj Kumar is a researcher of Plant Biotechnology in the Division of Microbial Technology at the Amity University Uttar Pradesh, India. He referees for many more, including Phytoremediation, Journal of Soil Sediments and many more. Dr. Kumar’s research is the integration of microbial genetics with a breadth of plant physiological approaches to enable novel gene discovery and conferring metabolites.Dr. Vivek Kumar is a scientist with involved in teaching, research and guidance, with a pledge to enduring knowledge. Dr. Kumar is working in the Institute of Microbial Technology at Amity University Uttar Pradesh, Noida, India. He obtained his masters and doctoral degree from CCS Haryana Agricultural University, Hisar, Haryana, India. He is serving in Editorial board of reputed international journals viz. Environment Asia, International Journal of Biological & Chemical Sciences, Journal of Advanced Botany and Zoology, Journal of Ecobiotechnology. He is also reviewer of Journal of Hazardous Materials, Science International, Acta Physiologiae Plantarum, Int. Research Journal of Plant Sciences, Int. J. Microbiology, African J Microbiology Research, Journal of Microbiology and Antimicrobials, Environment Science & Pollution Research, Rhizosphere. He has published 61 research papers, 19 book chapters, six review articles and two books. Dr. Kumar has also served as Microbiologist for eight years in Department of Soil and Water Research, Public Authority of Agricultural Affairs & Fish Resources, Kuwait. Dr. Kumar has organized number of conferences/workshops as convener/ organizing secretary.

Contents 5
About the Editors 7
1: Agricultural Nanotechnology: Concepts, Benefits, and Risks 9
1.1 Introduction 10
1.2 Conventional Farming: Issues and Limitations 11
1.2.1 Conventional Farming Leads to Health Issues 12
1.2.2 Intensive Conventional Farming Affects Environment 12
1.3 Current Agricultural Production Systems 13
1.4 Nanotools, Nanoprocesses, and Nanomaterials 15
1.5 Potentials and Risks of Nanotechnology in Agriculture 18
1.6 Conclusion and Future Trends 19
References 20
2: Nanotechnology in Life Science: Its Application and Risk 26
2.1 Introduction 27
2.2 Nanoparticle Exploitation and Developing Products 29
2.3 Nanotechnology Advantages in Agriculture, Food, and Medicine 30
2.4 Risk Assessment of Nanomaterials in Agriculture, Food, and Medicine 32
2.5 Conclusions 34
References 34
3: Production of Bionanomaterials from Agricultural Wastes 39
3.1 Introduction 40
3.2 Cellulose and Nanocellulose from Citrus and Orange Wastes 42
3.2.1 Cellulose and Nanocellulose Fibrils from Lignocellulose Fibers 43
3.2.2 Nanocellulose for Bioethanol Production 43
3.2.3 Nanocellulose-Based Materials for Water Treatment 44
3.2.4 Orange Peel Cellulose and Nanocellulose in Textile and Food Industry 45
3.3 Synthesis of Graphene Oxide from Agrowastes 45
3.4 Production of Amorphous Silica Nanoparticles from Agrowastes 47
3.5 Carbon Nanomaterials from Agrowastes 49
3.5.1 Activated Carbon 51
3.5.2 Black Carbon 53
3.6 Conclusion and Future Perspectives 54
References 55
4: Nanomaterials: Implications on Agroecosystem 65
4.1 Introduction 65
4.2 Nanotechnology and Agroecosystem 67
4.2.1 Crop Improvement 67
4.2.2 Potential Applications in Plant Systems 68
4.2.3 Crop Management 68
4.3 Nanomaterials and Nanofertilizers 68
4.3.1 Importance and Role of Nanofertilizers in Improvement of Nutrient Use Efficiency 69
4.3.2 Advantage of Nanofertilizer 70
4.3.3 Different Types of Nanofertilizer 71
4.3.3.1 Nitrogen Fertilizers 71
4.3.3.2 Potash Fertilizers 71
4.3.3.3 Zinc Nanofertilizer 71
4.3.3.4 Nanoporous Zeolite 71
4.4 Nanoherbicides 72
4.5 Nanopesticide 72
4.6 Developing New Nanopesticides 72
4.7 Food Packaging 73
4.7.1 Silver Nanoparticles and Nanocomposites as Antimicrobial Food Packaging Materials 74
4.8 Conclusions 75
References 75
5: Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management 78
5.1 Introduction 79
5.2 Nanotechnology for Production and Protection of Crop Plants 81
5.3 Nanosensors for Monitoring Soil Conditions and Environmental Stresses 85
5.3.1 Carbon Nanotube 85
5.3.2 Nanoaptamers 86
5.3.3 Smart Dust Technology 86
5.3.4 Wireless Sensors 86
5.4 Nanocapsules for Efficient Delivery of Pesticides, Fertilizers and Agrochemicals 87
5.4.1 Targeted Delivery of Agrochemicals Using Nanotechnology 87
5.4.2 Nano-based Pesticides in Agriculture 88
5.4.3 Nano-based Fertilizer Efficiency in Agriculture 88
5.5 Improving Plant Traits Against Environmental Stresses Using Nanotechnology 89
5.6 Nanotechnology and Its Applications in Water Conservation 91
5.7 Conclusion and Future Perspectives 93
References 94
6: Nanoengineering Superabsorbent Materials: Agricultural Applications 103
6.1 Introduction 104
6.2 Formation and Structure of Cross-Linked Polyacrylates 104
6.2.1 Statistical Models 105
6.3 Mechanisms of Swelling in Superabsorbent Polymers 106
6.3.1 Hydration 106
6.3.2 Hydrogen Bonds 107
6.4 Important Basic Properties of Superabsorbent Polymers 108
6.4.1 Absorption of Aqueous Solution 108
6.4.2 Moisture Absorption 109
6.5 Superabsorbent Polymers Application in Agriculture 110
6.6 Nanotechnology Application in Superabsorbent Polymers 112
6.7 Superabsorbent/Clay Nanocomposites 113
6.8 Special Characteristics 117
References 117
7: Nanotechnology in Agriculture, Food Process Product, and Food Packaging 120
7.1 Introduction 121
7.2 Nanotechnology 121
7.3 Nanotechnology in Food Sector 122
7.4 Nanotechnology Within the Food Trade 123
7.4.1 Nano Foodstuff 124
7.5 Nanotechnology in Agriculture 124
7.6 Nanotechnology in Food Processing 124
7.6.1 Nanodispersions and Nanocapsules 124
7.6.2 Association Colloids 125
7.6.3 Nanoemulsions 126
7.6.4 Nanolaminates 126
7.6.5 Nanofrying 126
7.6.6 Novel Foods 126
7.6.7 Nanofiltration 127
7.6.8 Nanocomposites 127
7.6.9 Nanotubes 127
7.6.10 Nanoceuticals 127
7.6.11 Inactivation of Enzymes 127
7.7 Nanoscience and Technology in Food Packaging and Preservation 128
7.7.1 Improved Packing 128
7.7.2 Active Packing 128
7.7.3 Smart/Intelligent Packaging 129
7.7.4 Edible Nano Coating 129
7.8 Nanoscience and Technology in Food Safety 129
7.8.1 Role of the International Scientific Community on Food Safety 129
7.8.2 Pharmacological Medicine and the Safety Side of Nanoparticles 130
7.9 Laws 130
7.10 Future for Nanotechnology 130
7.11 Conclusions 131
References 131
Website References 134
8: Green Nanotechnology: Biomimetic Synthesis of Metal Nanoparticles Using Plants and Their Application in Agriculture and Forestry 135
8.1 Introduction 136
8.2 Role of Plants, Animals, and Microbial Cells in Nanobiotechnology 139
8.2.1 Plant and Animal Cells 139
8.2.2 Plants and Fungi 140
8.2.3 Plants and Bacteria 141
8.3 Plant Cell Wall 142
8.4 Preparation of Plant Extracts 142
8.4.1 Maceration 143
8.4.2 Ultrasound-Aided Solvent Extraction 143
8.4.3 Percolation Solvent Extraction 143
8.4.4 Soxhlet Solvent Extraction 143
8.4.5 Pressurized Solvent Extraction 144
8.4.6 Extraction by Reflux and Steam Distillation 144
8.4.7 Extraction with Supercritical Liquid 144
8.4.8 Countercurrent Extraction 144
8.5 Plants as Green Factories for Synthesis Metal Nanoparticles 145
8.6 Environmental Toxicity of Nanoparticles on the Plants 146
8.7 Effects of Metal Nanoparticles on the Plant Growth and Development 158
8.7.1 Titanium Dioxide Nanoparticles (TiO2 NPs) 158
8.7.2 Iron Nanoparticles (Fe3O4 NPs) 158
8.7.3 Zinc Oxide Nanoparticle (ZnO NPs) 159
8.7.4 Copper Nanoparticles (Cu NPs) 159
8.7.5 Silver Nanoparticles (Ag NPs) 160
8.7.6 Carbon Nanotubes (CNTs) 161
8.7.7 Alumina Nanoparticles (Al2O3 NPs) 161
8.8 Use of Metal Nanoparticles for Compound Delivery to Plants 162
8.8.1 Silica Nanoparticles as Delivery Systems in Plants 162
8.8.2 Magnetic Nanoparticles as Delivery Systems in Plants 163
8.9 Potentials of Nanotechnology in Forest Sector 163
8.10 Conclusions 165
References 166
9: Nanomaterials for Delivery of Nutrients and Growth-Promoting Compounds to Plants 178
9.1 Introduction 179
9.2 Clays and Other Materials as Nanocarriers of N, P and K Macronutrient Fertilizers 180
9.3 Non-metal Nanomaterials Beneficial for Plant Growth 184
9.3.1 Carbon-Based Nanomaterials 184
9.4 Nanomaterials Based on Metals Essential for Plant Growth 189
9.4.1 Iron-Based Nanomaterials 189
9.4.2 Zn-/ZnO-Based Nanomaterials 193
9.4.3 Copper-Based Nanomaterials 195
9.4.4 Manganese and Cobalt Nanoparticles 195
9.5 Nanomaterials Based on Non-essential Metals and Metalloids Beneficial for Plant Growth 196
9.5.1 TiO2 Nanoparticles 196
9.5.2 Silver Nanoparticles 200
9.5.3 Gold-Based Nanomaterials 203
9.5.4 CeO2 Nanoparticles 204
9.5.5 Al-/Al2O3-Based Nanomaterials 206
9.5.6 Silicon-Based Nanomaterials 207
9.5.7 Selenium Nanoparticles 210
9.6 Conclusion 211
References 211
10: Synthesis, Characterization, and Application of Chitosan Nanomaterials Loaded with Zinc and Copper for Plant Growth and Protection 228
10.1 Introduction 229
10.2 Synthesis of Cu and Zn Chitosan NPs 230
10.2.1 Ionic Gelation Method 230
10.3 Characterization of Cu and Zn Chitosan NPs 231
10.3.1 Dynamic Light Scattering (DLS) 231
10.3.2 Fourier Transform Infrared (FTIR) Spectroscopy 232
10.3.3 Scanning Electron Microscope (SEM) 234
10.3.4 Transmission Electron Microscopy (TEM) 237
10.3.5 Atomic Absorption Spectroscopy (AAS) 238
10.4 Application of Cu and Zn Chitosan NPs 238
10.4.1 Antimicrobial Activity 239
10.4.2 Seed Germination and Seedling Growth 241
10.4.3 Biochemical Response 242
10.4.3.1 Storage Food Mobilizing Enzyme 242
10.4.3.2 Plant Defense System 244
10.5 Future Prospects 244
References 245
11: Nanotechnology for Enhancing Crop Productivity 249
11.1 Introduction 250
11.2 Nanotechnology 250
11.3 Potential Applications of Nanotechnology in Crop Productivity 253
11.3.1 Nano-fertilizers 253
11.3.2 Nano-pesticides 255
11.3.3 Degradation of Pesticides 256
11.3.4 Detection of Pesticide Residues 256
11.3.5 Nano-herbicides 257
11.3.6 Detection of Plant Pathogens 257
11.3.7 Water Retention 258
11.3.8 Enhancing Seed Germination 258
11.3.9 Delivery of Genetic Material 258
11.4 Ethical and Safety Issues 259
11.5 Future Research 259
11.6 Conclusions 260
References 260
12: Nanomaterial-Based Biosensors in Agriculture Application and Accessibility in Rural Smallholding Farms: Food Security 263
12.1 Introduction 264
12.2 Nano-based Biosensor in Agriculture 265
12.3 Application of Nano-based Biosensor in Agriculture 267
12.3.1 Nano-based Biosensors for the Detection of Bacteria 267
12.3.2 Nano-based Biosensors for the Detection of Mycotoxins 269
12.3.3 Nano-based Biosensors for Detection of Pesticides and Other Contaminants 270
12.3.4 Nano-based Biosensor for Herbicides Detections 271
12.3.5 Nano-based Biosensors for Detection of Veterinary Drug Resistance and Residues 272
12.4 Nanotechnology in Food Safety and Security: Policy Rationale 273
12.5 Conclusion 275
References 276
13: Nanosensors: Frontiers in Precision Agriculture 279
13.1 Introduction 279
13.2 Nanotechnology in Agricultural Sector 280
13.3 Precision Agriculture 282
13.4 Nanosensors 282
13.4.1 Nanosensors in Agriculture 283
13.4.1.1 Nanosensors to Monitor Soil Conditions and Plant Growth Hormone 284
13.4.1.2 Nanobiosensors for Plant Pathogen Detection 285
13.4.1.3 Nanobiosensors for Pesticide Residue Detection 286
13.5 Conclusions 288
References 289
14: Application of Nanomaterials Toward Development of Nanobiosensors and Their Utility in Agriculture 292
14.1 Introduction 293
14.2 Nanofertilizers 295
14.3 Food Products and Packaging 297
14.4 Nanodevices in Agriculture 298
14.5 Agro-based Feed/Food and Toxicity 298
14.6 Future Perspectives 299
References 300
15: Modern Prospects of Nanotechnology in Plant Pathology 303
15.1 Introduction 304
15.2 Overview of Plant Diseases 305
15.3 Plant Pathogens Detection and Plant Diseases Diagnosis 306
15.4 Nanotechnology and Plant Pathology 307
15.4.1 Quantum Dots (QDs) and Carbon Nanomaterials as Prospective Materials for Detection of Plant Pathogens 308
15.5 Application of Nanoparticle in Plant Diseases and Its Risk Assessment 308
15.6 Application of Different Nanoparticle Types for Management of Plant Diseases 308
15.6.1 Silver NPs Used as Plant Diseases Control 308
15.6.2 Silver and Silica-Silver 310
15.6.3 Mode of Action of AgNPs Against Microorganisms 310
15.7 Mode of Action of Other NPs Against Microorganisms 312
15.8 Impact of Nanoparticles on DNA Damage 312
15.9 Reduction of Plants Disease Severity by Silver Nanoparticles 312
15.10 Conclusions 313
References 313
16: Nanocomposites: Future Trends and Perspectives Towards Affinity Biosensor 316
16.1 Introduction 317
16.2 Biosensor 319
16.2.1 Electrochemical Biosensors 321
16.2.1.1 Amperometric Biosensor 322
16.2.1.2 Potentiometric Biosensors 324
16.2.1.3 Electrochemical Impedance Spectroscopy-Based Biosensor 324
16.2.1.4 Conductometric Biosensors 326
16.2.1.5 Voltammetry-Based Biosensors 327
16.2.1.5.1 Differential-Pulse Voltammetry (DPV) 329
16.2.1.5.2 Square-Wave Voltammetry (SWV) 329
16.2.1.5.3 Electrochemical Stripping Analysis 330
16.2.2 Field Effect Transistor-Based Biosensors 330
16.3 Nanotechnology 332
16.3.1 Nanocomposites 332
16.3.2 Properties of Nanocomposites 334
16.4 Biomolecular Immobilisation on Nanocomposites 337
16.5 Nanocomposites and Affinity Biosensor 339
16.5.1 Immunosensors 339
16.5.2 DNA Sensors 342
16.6 Conclusion and Future Perspectives 344
Glossary 345
References 347
17: Application of Nanotechnology in Enhancement of Crop Productivity and Integrated Pest Management 357
17.1 Introduction 358
17.2 Nanoparticles in Boosting Crop Production 359
17.3 Use of Nanobiosensor in Pathogen Detection 360
17.4 Use of Nanoparticles and Nanoformulations in Plant Disease Management 361
17.5 Nanoherbicide Usage as an Effective Tool for Controlling the Weed 362
17.6 Nanoparticles Production Through Agriculture 363
17.7 Conclusion 363
References 365

Erscheint lt. Verlag 14.6.2017
Zusatzinfo VIII, 371 p. 48 illus., 36 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Technik Maschinenbau
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
Schlagworte Engineered nanomaterials • Nano-agrotechnology • Nano-based biosensors • Nanoengineering superabsorbent materials • Nutrient management
ISBN-10 981-10-4573-9 / 9811045739
ISBN-13 978-981-10-4573-8 / 9789811045738
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich