Big Data and Differential Privacy (eBook)

Analysis Strategies for Railway Track Engineering
eBook Download: EPUB
2017 | 1. Auflage
272 Seiten
Wiley (Verlag)
978-1-119-22906-3 (ISBN)

Lese- und Medienproben

Big Data and Differential Privacy -  Nii O. Attoh-Okine
Systemvoraussetzungen
118,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A comprehensive introduction to the theory and practice of contemporary data science analysis for railway track engineering Featuring a practical introduction to state-of-the-art data analysis for railway track engineering, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering addresses common issues with the implementation of big data applications while exploring the limitations, advantages, and disadvantages of more conventional methods. In addition, the book provides a unifying approach to analyzing large volumes of data in railway track engineering using an array of proven methods and software technologies. Dr. Attoh-Okine considers some of today s most notable applications and implementations and highlights when a particular method or algorithm is most appropriate. Throughout, the book presents numerous real-world examples to illustrate the latest railway engineering big data applications of predictive analytics, such as the Union Pacific Railroad s use of big data to reduce train derailments, increase the velocity of shipments, and reduce emissions. In addition to providing an overview of the latest software tools used to analyze the large amount of data obtained by railways, Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering: Features a unified framework for handling large volumes of data in railway track engineering using predictive analytics, machine learning, and data mining Explores issues of big data and differential privacy and discusses the various advantages and disadvantages of more conventional data analysis techniques Implements big data applications while addressing common issues in railway track maintenance Explores the advantages and pitfalls of data analysis software such as R and Spark, as well as the Apache Hadoop data collection database and its popular implementation MapReduce Big Data and Differential Privacy is a valuable resource for researchers and professionals in transportation science, railway track engineering, design engineering, operations research, and railway planning and management. The book is also appropriate for graduate courses on data analysis and data mining, transportation science, operations research, and infrastructure management. NII ATTOH-OKINE, PhD, PE is Professor in the Department of Civil and Environmental Engineering at the University of Delaware. The author of over 70 journal articles, his main areas of research include big data and data science; computational intelligence; graphical models and belief functions; civil infrastructure systems; image and signal processing; resilience engineering; and railway track analysis. Dr. Attoh-Okine has edited five books in the areas of computational intelligence, infrastructure systems and has served as an Associate Editor of various ASCE and IEEE journals.

Nii Attoh-Okine, PhD, PE is Professor in the Department of Civil and Environmental Engineering at the University of Delaware. The author of over 70 journal articles, his main areas of research include big data and data science; computational intelligence; graphical models and belief functions; civil infrastructure systems; image and signal processing; resilience engineering; and railway track analysis. Dr. Attoh-Okine has edited five books in the areas of computational intelligence, infrastructure systems and has served as an Associate Editor of various ASCE and IEEE journals.

Preface xi

Acknowledgments xiii

1 Introduction 1

1.1 General 1

1.2 Track Components 2

1.3 Characteristics of Railway Track Data 4

1.4 Railway Track Engineering Problems 6

1.5 Wheel-Rail Interface Data 11

1.6 Geometry Data 15

1.7 Track Geometry DegradationModels 20

1.8 Rail Defect Data 25

1.9 Inspection and Detection Systems 33

1.10 Rail Grinding 37

1.11 Traditional Data Analysis Techniques 40

1.12 Remarks 41

References 42

2 Data Analysis - Basic Overview 49

2.1 Introduction 49

2.2 Exploratory Data Analysis (EDA) 49

2.3 Symbolic Data Analysis 53

2.4 Imputation 54

2.5 Bayesian Methods and Big Data Analysis 56

2.6 Remarks 57

References 57

3 Machine Learning: A Basic Overview 59

3.1 Introduction 59

3.2 Supervised Learning 60

3.3 Unsupervised Learning 61

3.4 Semi-Supervised Learning 61

3.5 Reinforcement Learning 61

3.6 Data Integration 63

3.7 Data Science Ontology 63

3.8 Imbalanced Classification 69

3.9 Model Validation 70

3.10 Ensemble Methods 71

3.11 Big P and Small N (P ?â N) 74

3.12 Deep Learning 79

3.13 Data Stream Processing 95

3.14 Remarks 105

References 105

4 Basic Foundations of Big Data 113

4.1 Introduction 113

4.2 Query 116

4.3 Taxonomy of Big Data Analytics in Railway Track Engineering 123

4.4 Data Engineering 124

4.5 Remarks 130

References 130

5 Hilbert-Huang Transform, Profile, Signal, and Image Analysis 133

5.1 Hilbert-Huang Transform 133

5.2 Axle Box Acceleration 150

5.3 Analysis 151

5.4 Remarks 153

References 153

6 Tensors - Big Data in Multidimensional Settings 157

6.1 Introduction 157

6.2 Notations and Definitions 158

6.3 Tensor Decomposition Models 161

6.4 Application 164

6.5 Remarks 170

References 171

7 Copula Models 175

7.1 Introduction 175

7.2 Pair Copula: Vines 184

7.3 Computational Example 186

7.4 Remarks 192

References 193

8 Topological Data Analysis 197

8.1 Introduction 197

8.2 Basic Ideas 197

8.3 A Simple Railway Track Engineering Application 203

8.4 Remarks 204

References 204

9 Bayesian Analysis 207

9.1 Introduction 207

9.2 Markov Chain Monte Carlo (MCMC) 210

9.3 Approximate Bayesian Computation 210

9.4 Markov Chain Monte Carlo Application 216

9.5 ABC Application 219

9.6 Remarks 221

References 222

10 Basic Bayesian Nonparametrics 225

10.1 General 225

10.2 Dirichlet Family 226

10.3 Dirichlet Process 227

10.4 Finite Mixture Modeling 231

10.5 Bayesian Nonparametric Railway Track 232

10.6 Remarks 233

References 233

11 Basic Metaheuristics 235

11.1 Introduction 235

11.2 Remarks 237

References 239

12 Differential Privacy 241

12.1 General 241

12.2 Differential Privacy 242

12.3 Remarks 247

References 247

Index 249

Erscheint lt. Verlag 22.5.2017
Reihe/Serie Wiley Series in Operations Research and Management Science
Wiley Series in Operations Research and Management Science
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Fahrzeugbau / Schiffbau
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Bauingenieur- u. Bauwesen • Betriebswirtschaft • Betriebswirtschaft u. Operationsforschung • Big Data • Business & Management • Civil Engineering & Construction • Data Analysis • Datenanalyse • Management Science/Operational Research • Statistics • Statistik • Transportation Engineering • Verkehrsbau • Wirtschaft u. Management
ISBN-10 1-119-22906-5 / 1119229065
ISBN-13 978-1-119-22906-3 / 9781119229063
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 14,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99