Deep Learning with Python (eBook)
XVII, 226 Seiten
Apress (Verlag)
978-1-4842-2766-4 (ISBN)
- Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe
- Gain the fundamentals of deep learning with mathematical prerequisites
- Discover the practical considerations of large scale experiments
- Take deep learning models to production
Nikhil S. Ketkar currently leads the Machine Learning Platform team at Flipkart, India's largest e-commerce company. He received his Ph.D. from Washington State University. Following that he conducted postdoctoral research at University of North Carolina at Charlotte, which was followed by a brief stint in high frequency trading at Transmaket in Chicago. More recently he led the data mining team in Guavus, a startup doing big data analytics in the telecom domain and Indix, a startup doing data science in the e-commerce domain. His research interests include machine learning and graph theory.
Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms.This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included.Deep Learning with Python alsointroduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. What You Will Learn Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to productionWho This Book Is ForSoftware developers who want to try out deep learning as a practical solution to a particular problem. Software developers in a data science team who want to take deep learning models developed by data scientists to production.
Nikhil S. Ketkar currently leads the Machine Learning Platform team at Flipkart, India’s largest e-commerce company. He received his Ph.D. from Washington State University. Following that he conducted postdoctoral research at University of North Carolina at Charlotte, which was followed by a brief stint in high frequency trading at Transmaket in Chicago. More recently he led the data mining team in Guavus, a startup doing big data analytics in the telecom domain and Indix, a startup doing data science in the e-commerce domain. His research interests include machine learning and graph theory.
Contents at a Glance 5
Contents 6
About the Author 11
About the Technical Reviewer 12
Acknowledgments 13
Chapter 1: Introduction to Deep Learning 14
Historical Context 14
Advances in Related Fields 16
Prerequisites 16
Overview of Subsequent Chapters 17
Installing the Required Libraries 18
Chapter 2: Machine Learning Fundamentals 19
Intuition 19
Binary Classification 19
Regression 20
Generalization 21
Regularization 26
Summary 28
Chapter 3: Feed Forward Neural Networks 29
Unit 29
Overall Structure of a Neural Network 31
Expressing the Neural Network in Vector Form 32
Evaluating the output of the Neural Network 33
Training the Neural Network 35
Deriving Cost Functions using Maximum Likelihood 36
Binary Cross Entropy 37
Cross Entropy 37
Squared Error 38
Summary of Loss Functions 39
Types of Units/Activation Functions/Layers 39
Linear Unit 40
Sigmoid Unit 40
Softmax Layer 41
Rectified Linear Unit (ReLU) 41
Hyperbolic Tangent 42
Neural Network Hands-on with AutoGrad 45
Summary 45
Chapter 4: Introduction to Theano 46
What is Theano 46
Theano Hands-On 47
Summary 72
Chapter 5: Convolutional Neural Networks 73
Convolution Operation 73
Pooling Operation 80
Convolution-Detector-Pooling Building Block 82
Convolution Variants 86
Intuition behind CNNs 87
Summary 88
Chapter 6: Recurrent Neural Networks 89
RNN Basics 89
Training RNNs 94
Bidirectional RNNs 101
Gradient Explosion and Vanishing 102
Gradient Clipping 103
Long Short Term Memory 105
Summary 106
Chapter 7: Introduction to Keras 107
Summary 121
Chapter 8: Stochastic Gradient Descent 122
Optimization Problems 122
Method of Steepest Descent 123
Batch, Stochastic (Single and Mini-batch) Descent 124
Batch 125
Stochastic Single Example 125
Stochastic Mini-batch 125
Batch vs. Stochastic 125
Challenges with SGD 125
Local Minima 125
Saddle Points 126
Selecting the Learning Rate 127
Slow Progress in Narrow Valleys 128
Algorithmic Variations on SGD 128
Momentum 129
Nesterov Accelerated Gradient (NAS) 130
Annealing and Learning Rate Schedules 130
Adagrad 130
RMSProp 131
Adadelta 132
Adam 132
Resilient Backpropagation 132
Equilibrated SGD 133
Tricks and Tips for using SGD 133
Preprocessing Input Data 133
Choice of Activation Function 133
Preprocessing Target Value 134
Initializing Parameters 134
Shuffling Data 134
Batch Normalization 134
Early Stopping 134
Gradient Noise 134
Parallel and Distributed SGD 135
Hogwild 135
Downpour 135
Hands-on SGD with Downhill 136
Summary 141
Chapter 9: Automatic Differentiation 142
Numerical Differentiation 142
Symbolic Differentiation 143
Automatic Differentiation Fundamentals 144
Forward/Tangent Linear Mode 145
Reverse/Cotangent/Adjoint Linear Mode 149
Implementation of Automatic Differentiation 152
Source Code Transformation 152
Operator Overloading 153
Hands-on Automatic Differentiation with Autograd 154
Summary 157
Chapter 10: Introduction to GPUs 158
Summary 167
Chapter 11: Introduction to Tensorflow 168
Summary 203
Chapter 12: Introduction to PyTorch 204
Summary 217
Chapter 13: Regularization Techniques 218
Model Capacity, Overfitting, and Underfitting 218
Regularizing the Model 219
Early Stopping 219
Norm Penalties 221
Dropout 222
Summary 223
Chapter 14: Training Deep Learning Models 224
Performance Metrics 224
Data Procurement 227
Splitting Data for Training/Validation/Test 228
Establishing Achievable Limits on the Error Rate 228
Establishing the Baseline with Standard Choices 229
Building an Automated, End-to-End Pipeline 229
Orchestration for Visibility 229
Analysis of Overfitting and Underfitting 229
Hyper-Parameter Tuning 231
Summary 231
Index 232
Erscheint lt. Verlag | 18.4.2017 |
---|---|
Zusatzinfo | XVII, 226 p. 93 illus., 65 illus. in color. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Informatik ► Web / Internet | |
Mathematik / Informatik ► Mathematik | |
Technik | |
Schlagworte | Caffe • Deep learning • Deep Learning Architecture • GPU • Keras • Python • Theano |
ISBN-10 | 1-4842-2766-2 / 1484227662 |
ISBN-13 | 978-1-4842-2766-4 / 9781484227664 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich