Study of Electronic Properties of 122 Iron Pnictide Through Structural, Carrier-Doping, and Impurity-Scattering Effects -  Tatsuya Kobayashi

Study of Electronic Properties of 122 Iron Pnictide Through Structural, Carrier-Doping, and Impurity-Scattering Effects (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XII, 88 Seiten
Springer Singapore (Verlag)
978-981-10-4475-5 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis presents various characteristics of 122-type iron pnictide (FeSC) such as crystal and electronic structure, carrier-doping effect, and impurity-scattering effect, using transport, magnetization, specific heat, single-crystal X-ray diffraction, and optical spectral measurements. Most notably the measurement on the magnetic fluctuation in the material successfully explains already known unusual electronic properties, i.e., superconducting gap symmetry, anisotropy of in-plane resistivity in layered structure, and charge dynamics; and comparing them with those of normal phase, the controversial problems in FeSCs are eventually settled.

The thesis provides broad coverage of the physics of FeSCs both in the normal and superconducting phase, and readers therefore benefit from the efficient up-to-date study of FeSCs in this thesis. An additional attraction is the detailed description of the experimental result critical for the controversial problems remaining since the discovery of FeSC in 2008, which helps readers follow up recent developments in superconductor research.



Tatsuya Kobayashi is an experimentalist in condensed-matter physics, and his work is concerned with strongly correlated electron systems and iron-based superconductors.

Tatsuya Kobayashi received a Bachelor of Science, Master of Science, and Ph.D. from the Department of Physics, Graduate School of Science, Osaka University in 2011, 2013, and 2016, respectively. During his graduate program, he joined the group led by Professor Setsuko Tajima in the Department of Physics, Osaka University. Between April 2014 and March 2016, he was awarded a research fellowship for young scientists (DC2) by the Japan Society for the Promotion of Science (JSPS), and his research was supported by JSPS.


This thesis presents various characteristics of 122-type iron pnictide (FeSC) such as crystal and electronic structure, carrier-doping effect, and impurity-scattering effect, using transport, magnetization, specific heat, single-crystal X-ray diffraction, and optical spectral measurements. Most notably the measurement on the magnetic fluctuation in the material successfully explains already known unusual electronic properties, i.e., superconducting gap symmetry, anisotropy of in-plane resistivity in layered structure, and charge dynamics; and comparing them with those of normal phase, the controversial problems in FeSCs are eventually settled.The thesis provides broad coverage of the physics of FeSCs both in the normal and superconducting phase, and readers therefore benefit from the efficient up-to-date study of FeSCs in this thesis. An additional attraction is the detailed description of the experimental result critical for the controversial problems remaining since the discovery of FeSC in 2008, which helps readers follow up recent developments in superconductor research.

Tatsuya Kobayashi is an experimentalist in condensed-matter physics, and his work is concerned with strongly correlated electron systems and iron-based superconductors. Tatsuya Kobayashi received a Bachelor of Science, Master of Science, and Ph.D. from the Department of Physics, Graduate School of Science, Osaka University in 2011, 2013, and 2016, respectively. During his graduate program, he joined the group led by Professor Setsuko Tajima in the Department of Physics, Osaka University. Between April 2014 and March 2016, he was awarded a research fellowship for young scientists (DC2) by the Japan Society for the Promotion of Science (JSPS), and his research was supported by JSPS.

Supervisor’s Foreword 6
Parts of this thesis have been published in the following journal articlesT. Kobayashi, M. Nakajima, S. Miyasaka, and S. Tajima, Phys. Rev. B 94, 224516 (2016)T. Adachi, Y. Nakamatsu, T. Kobayashi, S. Miyasaka, S. Tajima, M. Ichimiya, M. Ashida, H. Sagayama, H. Nakao, R. Kumai, and Y. Murakami, J. Phys. Soc. Jpn. 85, 063705 (2016)J. Jandke, P. Wild, M. Schackert, S. Suga, T. Kobayashi, S. Miyasaka, S. Tajima, and W. Wulfhekel, Phys. Rev. B 93, 104528 (2016)E. Uykur, T. Kobayashi, W. Hirata, S. Miyasaka, S. Tajima, and C. A. Kuntscher, Phys. Rev. B 92, 245133 (2015)N. Murai, T. Fukuda, T. Kobayashi, M. Nakajima, H. Uchiyama, D. Ishikawa, S. Tsutsui, H. Nakamura, M. Machida, S. Miyasaka, S. Tajima, and A. Q. R. Baron, Phys. Rev. B 93, 020301(R) (2016) (Editors’ Suggestion)M. Miyamoto, H. Mukuda, T. Kobayashi, M. Yashima, Y. Kitaoka, S. Miyasaka, and S. Tajima, Phys. Rev. B 92, 125154 (2015)T. Kobayashi, K. Tanaka, S. Miyasaka, and S. Tajima, J. Phys. Soc. Jpn. 84, 094707 (2015)C. P. Strehlow, M. Ko?czykowski, J. A. Murphy, S. Teknowijoyo, K. Cho, M. A. Tanatar, T. Kobayashi, S. Miyasaka, S. Tajima, and R. Prozorov, Phys. Rev. B 90, 020508(R) (2014)H. Suzuki, T. Kobayashi, S. Miyasaka, T. Yoshida, K. Okazaki, L. C. C. Ambolode, II, S. Ideta, M. Yi, M. Hashimoto, D. H. Lu, Z.-X. Shen, K. Ono, H. Kumigashira, S. Tajima, and A. Fujimori, Phys. Rev. B 89, 184513 (2014)T. Kobayashi, S. Miyasaka, S. Tajima, and N. Chikumoto, J. Phys. Soc. Jpn. 83, 104702 (2014)S. Miyasaka, A. Takemori, T. Kobayashi, S. Suzuki, S. Saijo, S. Tajima, J. Phys. Soc. Jpn. 82, 124706 (2013)T. Kobayashi, S. Miyasaka, S. Tajima, T. Nakano, Y. Nozue, N. Chikumoto, H. Nakao, R. Kumai, and Y. Murakami, Phys. Rev. B 87, 174520 (2013)J. Murphy, C. P. Strehlow, K. Cho, M. A. Tanatar, N. Salovich, R. W. Giannetta, T. Kobayashi, S. Miyasaka, S. Tajima, and R. Prozorov, Phys. Rev. B 87, 140505(R) (2013)M. Ikeda, M. Hagiwara, T. Kobayashi, W. Hirata, S. Miyasaka, and S. Tajima, J. Korean Phys. Soc. 62, 2007 (2013)T. Kida, T. Kobayashi, S. Miyasaka, S. Tajima, and M. Hagiwara, J. Low Temp. Phys. 170, 346 (2013)S. Yeninas, M. A. Tanatar, C. Strehlow, J. Murphy, O. E. Ayala-Valenzucla, R. D. McDonald, U. Welp, W. K. Kwok, T. Kobayashi, S. Miyasaka, S. Tajima, and R. Prozorov, Phys. Rev. B, 87, 094503 (2013)T. Dulguun, H. Mukuda, T. Kobayashi, F. Engetsu, H. Kinouchi, M. Yashima, Y. Kitaoka, S. Miyasaka, and S. Tajima, Phys. Rev. B 85, 144515 (2012)T. Kobayashi, S. Miyasaka, and S. Tajima, J. Phys. Soc. Jpn. Suppl. B 81, SB045 (2012) 8
Acknowledgements 10
Contents 11
1 Introduction 13
1.1 Iron-Based Superconductor (FeSC) 13
1.2 Crystal Structure and Magnetic Order of FeSC 13
1.2.1 Electronic Structure 14
1.3 Phase Diagram of FeSC 15
1.4 Superconducting Property 18
1.4.1 Superconducting Gap Symmetry 18
1.4.2 Relationship Between Tc and Crystal Structure 18
1.4.3 Post-annealing Effect on Superconducting Properties 19
1.5 Normal State Property 19
1.5.1 Electronic Anisotropy 20
1.5.2 Optical Property 21
1.6 Aim of This Study 22
References 22
2 Experimental Methods 25
2.1 Single-Crystal Growth 25
2.1.1 SrFe2(As1-xPx)2 25
2.1.2 Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) 26
2.1.3 Post Annealing Treatment 26
2.2 Transport Measurement 26
2.2.1 Resistivity Measurement 26
2.2.2 Hall Coefficient Measurement 26
2.2.3 Resistivity Measurement with Detwinned Crystal 27
2.3 Magnetization 28
2.4 X-Ray Diffraction Measurement 28
2.5 Specific Heat Measurement 28
2.6 Optical Measurement 28
References 29
3 Electronic Phase Diagram and Superconducting Property of SrFe2(As1-xPx)2 30
3.1 Introduction 30
3.2 Annealing Effect 31
3.3 Structural Analysis 32
3.4 Transport Measurement 35
3.5 Magnetic Susceptibility Measurement 40
3.6 Electronic Phase Diagram 41
3.7 Specific Heat in Superconducting State 42
3.8 Summary 46
References 46
4 In-Plane Resistivity Anisotropy of Ba(Fe1-xTMx)2As2 (TM = Cr, Mn, and Co) 48
4.1 Introduction 48
4.2 Resistivity Measurement with Detwinned Crystals 49
4.3 Hall Effect in Cr- and Mn-Ba122 53
4.4 Relation Between RH and ?? 54
4.5 Discussion on the Origin of the Resistivity Anisotropy 54
4.6 Summary 57
References 58
5 Optical Properties of Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) 60
5.1 Introduction 60
5.2 Doping Dependence of Optical Spectra 61
5.3 Transition Metal Doping Effect on the AFO State 78
5.4 Magnetic/Nonmagnetic Impurity Effect 80
5.5 Localized Carrier Induced by Mn/Cr-Doping 86
5.6 Summary 88
References 89
6 Conclusion 91
6.1 Structural Properties and Superconductivity in P-Sr122 91
6.2 Resistivity Anisotropy in Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) 92
6.3 Optical Conductivity in Ba(Fe1-xTMx)2As2 (TM=Cr, Mn, and Co) 93
6.4 Summary 94
6.5 Future Work 95
Appendix Curriculum Vitae 96

Erscheint lt. Verlag 7.5.2017
Reihe/Serie Springer Theses
Zusatzinfo XII, 88 p. 56 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Anisotropy of electric transport • Carrier localization by magnetic impurity • Electronic properties caused by magnetic fluctuation • Iron-pnictide superconductor • Sign-reserving s-wave superconductivity
ISBN-10 981-10-4475-9 / 9811044759
ISBN-13 978-981-10-4475-5 / 9789811044755
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

eBook Download (2023)
De Gruyter (Verlag)
49,95