Energie- und Ressourceninnovation (eBook)
416 Seiten
Carl Hanser Verlag GmbH & Co. KG
978-3-446-45275-6 (ISBN)
Die Energiewende bewegt ganz Deutschland. Atomenergie soll durch erneuerbare Energie ersetzt werden. Die Energiewirtschaft wird sich grundlegend erneuern. Dieses Buch zeigt Ihnen, worüber wir jetzt nachdenken müssen und welche Lösungsansätze es gibt:
? Wie können die volatilen Energien gut in das Gesamtsystem der Energieerzeugung integriert werden?
? Welche Rolle spielen die konventionellen Energien in Zukunft?
? Welche Anforderungen werden zukünftig an Speicher gestellt?
? Welche Chancen und Potenziale haben erneuerbare Energien und Kraft-Wärme-Kopplung in Europa?
? Wie kann die Wertigkeit erneuerbarer Energieträger beurteilt werden?
? Welche Ansätze für unterstützende Entscheidungsmodelle gibt es?
Sie erfahren, welche Innovationen bereits bei der Neugestaltung der Energiebereitstellung helfen und welche noch fehlen. Ein intensiver Einstieg in das Innovationsmanagement und praktische Beispiele führen Ihnen diesen entscheidenden Aspekt vor Augen. Dieses Buch sollte jede(r) 'energiewendige' Verantwortliche lesen.
Professorin im Fachgebiet "Regenerative Energien", Beuth Hochschule für Technik Berlin, FB VIII - Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik; Inhaberin des Instituts für Energie- und RessourcenInnovation (INERI) mit den Schwerpunkten "Einsatz von Energie aus Biomasse", "Entwicklung von Prozessmodellen für Energiesysteme", "energiewirtschaftliche Untersuchungen", "Konzepte zur Steigerung der Energieeffizienz" (www.ineri.de).
Inhalt 6
Vorwort 10
1 Grundlagen der Energiewirtschaft 14
1.1 Begriffe der Energiewirtschaft 14
1.1.1 Energie 15
1.1.2 Energieinhalt 17
1.1.3 Stufen der Energiebereitstellung 17
1.1.4 Begriffe der Leistung 21
1.1.5 Wirkungsgrad 29
1.2 Energiewirtschaft früher und heute 30
1.3 Die neuen Herausforderungen 48
1.3.1 Technologische Herausforderungen 49
1.3.2 Politische/ökonomische Herausforderungen 53
1.3.3 Soziale und gesellschaftliche Herausforderungen 58
1.4 Der deutsche Energiemarkt 61
1.5 Energiewirtschaft in der EU 74
2 Flexibilisierung der Energieerzeugung und des Energieverbrauchs 88
2.1 Betrachtung der erneuerbaren Energien unter Nachhaltigkeitsaspekten 88
2.1.1 Ökologische Aspekte erneuerbarer Energien 88
2.1.2 Ökonomische Aspekte erneuerbarer Energien 106
2.1.3 Soziale und politische Aspekte erneuerbarer Energien 111
2.2 Die Rolle der erneuerbaren und konventionellen Energien im Energiemarkt 113
2.2.1 Power-to-Heat (PtH) 117
2.2.2 Lastenteilung 120
2.2.3 Kraft-Wärme-Kopplung (KWK) 125
2.3 Volatile Energien und deren Potenziale in Deutschland 132
2.3.1 Windenergie 132
2.3.2 Solarenergie 138
2.3.3 Betrachtung der Gesamterzeugung aus Windenergie und Photovoltaik 147
2.4 Konzepte zur Homogenisierung der Lastgänge und des Bedarfs 151
2.4.1 Smart Meter 153
2.4.2 Smart Grid 162
3 Möglichkeiten neuer Technologien in den Zeiten volatiler Energieerzeugung 168
3.1 Energiespeicher und deren Möglichkeiten 168
3.1.1 Kategorisierung und Klassifizierung von Speichern 171
3.1.2 Vergleich technischer Eigenschaften von Stromspeichern 173
3.1.3 Wirtschaftliche Aspekte von Stromspeichern 179
3.1.4 Speichertechnologien 181
3.2 Virtuelle Kraftwerke (VK) 199
3.3 Die Bedeutung biogener Energieerzeugung 211
3.3.1 Anlagentechnologie für flexible Stromerzeugung 217
3.3.2 Deckung der Residuallast 222
3.3.3 Herausforderungen für den flexiblen Einsatz von Bioenergieanlagen 224
3.3.4 Marktwirtschaftliche Aspekte 229
4 E-Energy und Entscheidungsmodelle 244
4.1 Vernetztes Energiesystem 244
4.2 Umgang mit großen Datenmengen 260
4.3 Computermodelle im E-Energy-System 265
4.3.1 Überblick Bionik 266
4.3.2 Schwarmintelligenz 272
4.3.3 Neuronale Netze 291
4.3.4 Die Evolutionstheorie als Optimierungsprozess 297
4.3.5 Quantifizierung von Stabilität in Stromnetzen 315
5 Innovationsmanagement im Energiebereich 326
5.1 Innovationsstrategie – die Einführung 333
5.1.1 Beispiel der innovativen Produktion von Biokraftstoffen, Firma VERBIO Vereinigte Bioenergie AG 336
5.1.2 Beispiel der Entwicklung eines innovativen Verfahrens für Biokraftstoff, Firma Clariant 345
5.2 Innovationsstrategie – die Theorie 348
5.2.1 Strategien der Zeitpunktwahl 349
5.2.2 Strategien der Technologiebeschaffung 352
5.2.3 Strategien der Technologieverwertung 355
5.2.4 Strategien des Innovationsimpulses 357
5.3 Innovationsstrategie am Beispiel von Biokraftstoffen aus Lignocellulose-Resstoffen 359
5.3.1 Innovationsstrategie Firma VERBIO 359
5.3.2 Innovationsstrategie Firma Clariant 362
5.3.3 Fazit der Innovationsstrategie 364
5.4 Innovationen voranbringen 370
5.4.1 Messung des Erfolgs im Innovationsprozess 371
5.4.2 Die Innovationsfähigkeit 374
5.4.3 Energiewende – Innovationsmotor für Deutschland 381
5.4.4 Komplexe Innovation im Rahmen der Energiewende 384
Literatur 388
Stichwortverzeichnis 416
2 | Flexibilisierung der Energieerzeugung und des Energieverbrauchs |
Aufgrund der intensiven Einbindung volatiler erneuerbarer Energien in das deutsche wie auch das europaweite Energiesystem stellt sich die Frage, welche Konzepte für eine sichere Versorgung angedacht sind und welche erfolgversprechend sein können.
2.1 | Betrachtung der erneuerbaren Energien unter Nachhaltigkeitsaspekten |
Die unterschiedlichen erneuerbaren Energien (wie Sonnenenergie, Windenergie, Geothermie, Wasserkraft, Bioenergie) werden unter dem Blickwinkel der Ökologie, Ökonomie und sozialer/politischer Aspekte betrachtet. Dabei wird neben klassischen Betrachtungen zu ökologischen Auswirkungen z. B. auf die unterschiedlichen Gestehungskosten und die damit verbundenen Probleme eingegangen. Darüber hinaus werden Auswirkungen auf den Arbeitsmarkt analysiert. Ebenso wird beleuchtet, welcher Umsatz mit den einzelnen EE bereits heute am Markt erzielt wird.
2.1.1 | Ökologische Aspekte erneuerbarer Energien |
Grundlage dieses Kapitels bildet die Studie (Memmler 2014) des Umweltbundesamtes. Im Rahmen der Studie wurden Ökobilanzen für die Strom- und Wärmebereitstellung aus unterschiedlichen technologischen Möglichkeiten an erneuerbaren Energien aufgestellt, analysiert und bewertet. Betrachtet wurden dabei in der Netto-Bilanz sowohl die Emissionen an Treibhausgasen und sonstigen Luftschadstoffen, die durch die Substitution fossiler Energiebereitstellung vermieden werden, wie auch die Emissionen, die durch den Einsatz erneuerbarer Energien verursacht werden.
Die Studie basiert auf der Methode der Lebenszyklusanalyse (Klöpffer 2009). Sie berücksichtigt die bei der Umwandlung von Primär- und Sekundärenergieträgern in Endenergieträger auftretenden Emissionen, wie diese z. B. bei der Verbrennung fossiler wie auch biogener Energieträger auftreten, die sogenannten direkten Emissionen. Es werden aber auch die indirekten Emissionen in Ansatz gebracht, die durch Vorketten der Umwandlungsprozesse verursacht werden, wie z. B. bei der Herstellung von Anlagen zur Energieumwandlung, Gewinnung und Bereitstellung von Energieträgern oder dem Bau von Gebäuden.
Es werden in der Studie acht Schadstoffe bzw. Schadstoffsummen betrachtet, die in Tabelle 2.1 dargestellt sind.
Tabelle 2.1 Übersicht der betrachteten Treibhausgase und Luftschadstoffe (Memmler 2014)
Kategorie | Name | Chemische Bezeichnung | Relatives Treibhausgas- bzw. Versauerungspotenzial (für Strom/Wärme/ Verkehr) |
Äquivalenzfaktor | Einheit |
Treibhausgase | Kohlenstoffdioxid | CO2 | 1 | kg CO2eq |
Säurebildende Schadstoffe | Schwefeldioxid | SO2 | 1 | kg SO2eq |
Weitere Luftschadstoffe | Staub | - | - | |
CO2eq — CO2-Äquivalent, SO2eq — SO2-Äquivalent |
Im Rahmen einer Ökobilanz wird den einzelnen Emissionen eine Referenzsubstanz (Wirkungsindikator) zugeordnet, hier CO2 bzw. SO2 (Nagel 2015). Die Emissionen werden über einen Faktor, den Äquivalenzfaktor, umgerechnet und einer Wirkungskategorie, in diesem Fall dem Treibhausgaspotenzial (GWP) bzw. dem Versauerungspotenzial, zugeordnet (Nagel 2015). Das Ergebnis wird dann als CO2eq (CO2-Äquivalente) bzw. SO2eq (SO2-Äquivalente) angegeben.
Im Folgenden wird ausschließlich das Treibhausgas CO2 betrachtet.
Aus den durchgeführten Betrachtungen wird errechnet, in welchem Umfang die Treibhausgas- und Luftschadstoffemissionen aus dem Einsatz fossiler Energieträger durch die Substitution mit erneuerbaren Energien vermieden werden können. Es ergibt sich ein spezifischer Netto-Vermeidungsfaktor (VFnetto). Um diesen zu berechnen, werden zunächst brutto vermiedene Emissionen (Ev, brutto) errechnet (Memmler 2014):
(2.1) |
mit den Faktoren:
Ev,brutto — brutto vermiedene Emissionen [t]: Fossile Energieträger werden durch die Bereitstellung von Endenergie aus erneuerbaren Energien substituiert.
EEBern — Endenergie aus erneuerbaren Energien [GWh]: Basisparameter der Emissionsbilanz.
SFm — Substitutionsfaktoren [%]: jeweiliger Anteil der fossilen Energieträger (z. B. Öl, Gas, Braun- und Steinkohle), der durch die Endenergiebereitstellung aus erneuerbaren Energien (EEBern) verdrängt wird. Sie spiegeln den Mix der Substitution fossiler Energieträger durch die Nutzung erneuerbarer Energieträger wider.
EFfossil,m — Emissionsfaktor des jeweiligen Energieträgers : Zusammenfassung der Gesamt-Emissionen über die jeweilige Energiebereitstellungskette. Dabei werden sowohl die direkten wie die indirekten (Vorketten — Gewinnung, Aufbereitung und Transport der Brennstoffe über die Herstellung der Anlagen bis zum Einsatz von Hilfsenergie und Hilfsstoffen im Anlagenbetrieb einschließlich deren Vorketten) Emissionen angesetzt. Sie repräsentieren den durchschnittlichen Anlagenbestand in Deutschland.
Erneuerbare Energien verursachen bei ihrer Umwandlung in Endenergie (EEBern) jedoch ebenfalls Emissionen (Eu [t]). Diese lassen sich wie folgt berechnen (Memmler 2014):
(2.2) |
mit
EFern — jeweiliger erneuerbarer Emissionsfaktor
Um nun die netto vermiedenen Emissionen (Ev,netto [t]) aus der Endenergiebereitstellung aus erneuerbaren Energien zu ermitteln, wird die Differenz aus den brutto vermiedenen Emissionen (Ev.brutto [t]) und den durch erneuerbare Energien verursachten Emissionen (Eu [t]) gebildet (Memmler 2014):
(2.3) |
Ist das Ergebnis der Subtraktion positiv, werden mehr Emissionen aus erneuerbaren Energien vermieden, als durch deren Umwandlung erzeugt werden. Dies hat ebenfalls eine positive Wirkung auf die Umwelt, die in diesem Fall durch den Einsatz erneuerbarer Energien zur Herstellung von Endenergie entlastet wird.
Als letzter Faktor ist der spezifische Netto-Vermeidungsfaktor (VFnetto ) interessant, der sich aus folgender Gleichung ergibt (Memmler 2014):
(2.4) |
Wird die Endenergiebereitstellung aus biogenen Energieträgern betrachtet, die nicht Reststoffe oder Abfälle sind, kann es zu Landnutzungsänderungen kommen. Dies ist ein wichtiger Faktor, der auf das Ergebnis einen entsprechenden Einfluss haben kann. Weitere Informationen können direkt der Studie (Memmler 2014) entnommen werden.
Die Berechnung der Ökobilanz zeigt, dass im Jahr 2013 Treibhausgasemissionen in Höhe von 146 Mio. t CO2-Äquivalente durch unterschiedliche Maßnahmen vermieden werden konnten. 72 % (105,4 Mio. t CO2-Äquivalente) davon wurden durch die Strombereitstellung aus erneuerbaren Energien hervorgerufen. Der Großteil davon (84 Mio. t CO2-Äquivalente) stammt aus Anlagen mit EEG-Vergütung. Im Wärmebereich konnte eine Senkung der Treibhausgasemissionen von 35,6 Mio. t (25 %) und im Kraftstoffbereich von 4,8 Mio. t (3 %) CO2-Äquivalente erreicht werden. Bild 2.1 fasst die Ergebnisse zusammen.
Bild 2.1 Netto vermiedene Treibhausgasemissionen durch die Nutzung erneuerbarer Energien im Jahr 2013 (nach Memmler 2014)
Wie stark die einzelnen Sektoren (Strom, Wärme, Verkehr) zur Reduzierung der Treibhausgase beitragen, ist sehr unterschiedlich (s. Bild 2.2). Die höchste Vermeidung an Treibhausgasen konnte im Sektor Stromerzeugung mit 72 % erreicht werden, obwohl dieser Bereich nur 47 % an der gesamten bereitgestellten Energie aus erneuerbaren Energien im Jahr 2013 ausmachte. Etwas mehr als die Hälfte (53 %) an Endenergie aus erneuerbaren Energien wurde in den Sektoren Wärme und Verkehr genutzt. Doch lag deren Vermeidungspotenzial zusammen nur bei 28 %. In diesen beiden Sektoren zeigt sich ein noch größeres bestehendes Potenzial.
Bild 2.2 Anteile der Sektoren an der Endenergiebereitstellung aus erneuerbaren Energien und den dadurch vermiedenen Treibhausgasemissionen (THG-Emissionen) im Jahr 2013 (nach Memmler 2014)
Zwischen den drei Sektoren kommen bei den Berechnungen unterschiedliche Einflüsse zum Tragen. So ist bei der Strom- und Wärmeerzeugung entscheidend, welche fossilen Energieträger durch erneuerbare Energien ersetzt werden. Bei den Biokraftstoffen sind Art und Herkunft der Rohstoffe entscheidend. Hinzu kommen Verdrängungseffekte und sekundäre Landnutzungsänderungen, die zu Unsicherheiten bei der Bilanzierung führen.
In Tabelle 2.2 sind die Netto-Vermeidungsfaktoren für die drei Sektoren und die netto vermiedenen Emissionen aufgeführt. Die im Stromsektor erreichten hohen spezifischen...
Erscheint lt. Verlag | 13.3.2017 |
---|---|
Verlagsort | München |
Sprache | deutsch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
Schlagworte | Energiewende • Energiewirtschaft • Innovation |
ISBN-10 | 3-446-45275-3 / 3446452753 |
ISBN-13 | 978-3-446-45275-6 / 9783446452756 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 30,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich