Laser Beam Micro-milling of Micro-channels in Aerospace Alloys -

Laser Beam Micro-milling of Micro-channels in Aerospace Alloys (eBook)

eBook Download: PDF
2017 | 1st ed. 2017
XXXII, 342 Seiten
Springer Singapore (Verlag)
978-981-10-3602-6 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and micro-electronics.


This volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and micro-electronics.

Acknowledgements 6
Contents 7
Abbreviations 8
List of Figures 10
List of Tables 25
Abstract 29
1 Introduction 31
1 Generation of Laser Pulses 33
1.1 Q-Switching 33
1.2 Function Principle of Q-Switch 34
1.3 Closing Frequency and Opening Time of the Q-Switch 34
2 Laser Ablation 35
3 Micro-channels Applications 36
4 Problem Definition 39
5 Research Objectives 40
6 Research Methodology 41
7 Research Utilization 42
2 Literature Review 44
1 Background 44
2 Laser Beam Machining (LBM) 45
2.1 Physical Factors Affecting the Process 45
2.1.1 Laser Radiation Features 46
2.1.2 Substrate Material Features 46
2.2 Laser Ablation Mechanism 46
2.3 Laser Beam Milling 47
2.3.1 Ablation Mechanism of Laser Beam Milling 48
2.3.2 Laser Beam Milling of Titanium Alloys 48
2.3.3 Laser Beam Milling of Nickel Alloys 49
2.3.4 Laser Beam Milling of Ceramics and CFRP 50
2.3.5 Parametric Effects in Laser Beam Milling 50
2.3.6 Temperatures and Stress Field Distribution 52
2.3.7 Laser Induced Periodic Structures 53
2.3.8 Laser Beam Milling with Auxiliary Concepts 54
2.4 Laser Beam Drilling/Trepanning 54
2.4.1 Ablation Mechanism in Laser Beam Drilling 55
2.4.2 Parametric Effects in Laser Beam Drilling 56
2.5 Dual Beam Laser Machining 58
2.6 Conclusions and Remarks 59
3 Laser Assisted Machining (LAM) 59
3.1 Material Removal Mechanism in LAM 60
3.2 Parametric Effects and Inspirations of LAM 60
3.2.1 Cutting Forces and Material Removal Rate 62
3.2.2 Tool Life and Surface Roughness 63
3.2.3 Temperature Fields Measurements and Microstructure 64
3.3 Conclusions and Remarks 66
4 Laser Chemical Machining/Etching (LCM/E) 66
4.1 LCM/E Mechanism 67
4.2 Parametric Effects and Inspirations of LCM/E 68
4.2.1 Porous Structures 68
4.2.2 3D Structures 70
4.3 Conclusions and Remarks 71
5 Laser Assisted Electrochemical Machining (LAECM) 72
5.1 Conclusions and Remarks 74
6 Under-Water Laser Ablation (UWLA) 74
6.1 UWLA Mechanism 75
6.1.1 Beam Focus 75
6.1.2 Water Layer Thickness 75
6.1.3 Splashing and Cavitation Bubbles 76
6.1.4 Melt Ejection and Sample Configuration 76
6.2 Parametric Effects of UWLA 77
6.2.1 High Ablation Rate 80
6.2.2 Low Ablation Rate 80
6.2.3 Possible Reasons of Ablation Rate Variations 81
6.3 Inspirations of UWLA 81
6.3.1 Crater Formation and Structure Characteristics 82
6.3.2 Under-Water Laser Milling 82
6.3.3 Under-Water Laser Drilling 85
6.3.4 Synthesis of Nano-particles 86
6.4 Conclusions and Remarks 89
7 Micro-channels Applications and Fabrication 90
7.1 Micro-channel Heat Exchangers 90
7.1.1 Automotive and Aerospace 90
7.1.2 Chemical Reactors 92
Falling-film Micro-reactors 93
Membrane Separation Technology 93
Co-current Micro-channel Absorption 94
7.1.3 Cryogenic Systems 95
7.2 Laser Diode Applications 96
7.3 Micro-channel Heat Pipes 96
7.4 Micro-pulsating Heat Pipes 97
7.5 Micro-channel Flat Heat Pipes 99
7.6 Micro-channel Heat Plates 100
7.7 Micro-channel Fabrication Techniques, Materials, Sizes and Shapes 100
7.7.1 Fabrication Techniques 100
7.7.2 Micro-channel Materials 105
7.7.3 Micro-channel Shapes and Sizes 105
7.8 Conclusions and Remarks 106
8 Literature Review Conclusions and Research Gaps 106
3 Research Methodology 110
1 Overall Research Methodology 110
2 Methodology of Initial Parameters Screening 111
2.1 Defining Ranges and Levels of Parameters 112
2.2 Defining Fixed and Variable Factors 113
3 Methodology of Laser Beam Machining Experimentation 114
3.1 CAD Modeling and Programming Procedure 114
3.2 Specimen Preparation and Machine Setting 117
3.3 Experimentation 118
3.3.1 Pilot Experimentation Without DOE 118
3.3.2 Mature Experimentation with DOE 121
4 Measurements Methodology 123
4.1 Metallographic Specimen Preparation 123
4.2 Chemical Etching 123
4.3 Measurements 125
5 Methodology of Analysis (Modeling, Optimization and Validations) 126
5.1 Mathematical Modeling 127
5.2 Multi-objective Optimization 128
4 Under-Water Laser Beam Micro-milling (UWLBMM) of Aerospace Alloys 130
1 Introduction 130
2 Under-Water Laser Beam Micro-milling (UWLBMM) 133
2.1 Experimental Setup 133
2.2 Machining Mechanism 139
2.3 Results and Discussions 140
2.3.1 Micro-channels Under Low Scan Speeds 140
2.3.2 Micro-channels Under High Scan Speeds 142
2.4 Analysis of Parametric Effects 145
2.4.1 Effect of Scan Speed 145
2.4.2 Effect of Pulse Repetition Rate 146
2.4.3 Effect of Laser Power 146
2.5 Concluding Remarks on UWLBMM 147
3 Comparison of Under-Water LBMM and Dry LBMM 148
3.1 Experimental Setup 148
3.2 Materials and Methods 148
3.3 Laser Beam Machining Under Dry Conditions 149
3.4 Laser Beam Machining Under Wet Conditions 151
3.5 Comparison of Parametric Effects 152
3.5.1 Effect of Laser Power 153
3.5.2 Effect of Pulse Repetition Rate 154
3.5.3 Effect of Scan Speed 156
3.6 Concluding Remarks on Comparison of Under-Water LBMM and Dry LBMM 159
4 Limitations of Under-Water Laser Beam Micro-milling 160
5 Dry Laser Beam Micro-milling (DLBMM) of Aerospace Alloys 162
1 DLBMM of Nickel Alloy (NA) 164
1.1 NA 100 × 50 µm Micro-channels 164
1.1.1 DLBMM of NA 100 × 50 µm 164
1.1.2 Parametric Effects During DLBMM of NA 100 × 50 µm 165
1.1.3 Microstructures of NA 100 × 50 µm Micro-channels 167
1.1.4 Micro-hardness Profiles NA 100 × 50 µm Micro-channels 169
1.2 NA 200 × 100 µm Micro-channels 172
1.2.1 DLBMM of NA 200 × 100 µm 172
1.2.2 Parametric Effects During DLBMM of NA 200 × 100 µm 172
1.2.3 Microstructures of NA 200 × 100 µm Micro-channels 175
1.2.4 Micro-hardness Profiles NA 100 × 50 µm Micro-channels 175
1.3 NA 400 × 200 µm Micro-channels 177
1.3.1 DLBMM of NA 400 × 200 µm 177
1.3.2 Parametric Effects During DLBMM of NA 400 × 200 µm 178
1.3.3 Microstructures of NA 400 × 200 µm Micro-channels 180
1.3.4 Micro-hardness Profiles NA 400 × 200 µm Micro-channels 180
1.4 NA 800 × 400 µm Micro-channels 182
1.4.1 DLBMM of NA 800 × 400 µm 182
1.4.2 Parametric Effects During DLBMM of NA 800 × 400 µm 182
1.4.3 Microstructures of NA 800 × 400 µm Micro-channels 184
1.4.4 Micro-hardness Profiles NA 800 × 400 µm Micro-channels 185
1.5 NA 1000 × 500 µm Micro-channels 186
1.5.1 DLBMM of NA 1000 × 500 µm 186
1.5.2 Parametric Effects During DLBMM of NA 1000 × 500 µm 187
1.5.3 Microstructures of NA 1000 × 500 µm Micro-channels 187
1.5.4 Micro-hardness Profiles NA 1000 × 500 µm Micro-channels 188
2 DLBMM of Titanium Alloy (TA) 191
3 DLBMM of Aluminum Alloy (AA) 194
4 Concluding Remarks 197
6 Dimensional Variations in DLBMM of Aerospace Alloys 199
1 Basics of Variations and Nomenclature 200
2 Geometrical Measurements 202
3 Dimensional Variations Over Micro-channel Sizes 206
3.1 Dimensional Variations in DLBMM of Nickel Alloy 206
3.1.1 Parametric Effects on Top Width (?XT) 207
Effect of Lamp Current Intensity 208
Effects of Pulse Frequency 208
Effects of Scan Speed 209
3.1.2 Parametric Effects on Bottom Width (?XB) 209
Effect of Lamp Current Intensity 210
Effects of Pulse Frequency 210
Effects of Scan Speed 211
3.1.3 Parametric Effects on Depth (?Z) 211
Effect of Lamp Current Intensity 211
Effects of Pulse Frequency 213
Effects of Scan Speed 213
3.1.4 Parametric Effects on Taperness (??) 214
Effect of Lamp Current Intensity 215
Effects of Pulse Frequency 215
Effects of Scan Speed 215
3.2 Dimensional Variations in DLBMM of Titanium Alloy 215
3.3 Dimensional Variations in DLBMM of Aluminum Alloy 217
4 Dimensional Variation Over Materials 218
4.1 Dimensional Variations in DLBMM of 100 × 50 µm Micro-channels 218
4.1.1 Parametric Effects on Top Width (?XT) of 100 × 50 µm Micro-channels 218
Effect of Lamp Current Intensity 219
Effect of Pulse Frequency 219
Effect of Scan Speed 220
4.1.2 Parametric Effects on Bottom Width (?XB) of 100 × 50 µm Micro-channels 220
Effect of Lamp Current Intensity 220
Effect of Pulse Frequency 221
Effect of Scan Speed 221
4.1.3 Parametric Effects on Depth (?Z) of 100 × 50 µm Micro-channels 222
Effect of Lamp Current Intensity 222
Effect of Pulse Frequency 223
Effect of Scan Speed 223
4.1.4 Parametric Effects on Taperness (??) of 100 × 50 µm Micro-channels 223
Effect of Lamp Current Intensity 223
Effect of Pulse Frequency 224
Effect of Scan Speed 224
4.2 Dimensional Variations in DLBMM of 200 × 100 µm Micro-channels 225
4.3 Dimensional Variations in DLBMM of 400 × 200 µm Micro-channels 225
4.4 Dimensional Variations in DLBMM of 800 × 400 µm Micro-channels 225
4.5 Dimensional Variations in DLBMM of 1000 × 500 µm Micro-channels 226
5 Concluding Remarks 226
7 Mathematical Modeling and Multi-objective Optimization 228
1 Analysis of Variance (ANOVA) Tests 228
2 Mathematical Modeling 230
3 Multi-objective Optimization 230
4 Modeling and Optimization for Nickel Alloy 232
4.1 Modeling and Optimization for NA 100 × 50 µm Micro-channels 232
4.2 Modeling and Optimization for NA 200 × 100 µm Micro-channels 234
4.3 Modeling and Optimization for NA 400 × 200 µm Micro-channels 236
4.4 Modeling and Optimization for NA 800 × 400 µm Micro-channels 238
4.5 Modeling and Optimization for NA 1000 × 500 µm Micro-channels 240
4.6 Summary of Multi-objective Optimization for Nickel Alloy 242
5 Modeling and Optimization for Titanium Alloy 243
5.1 Modeling and Optimization for TA 100 × 50 µm Micro-channels 243
5.2 Modeling and Optimization for TA 200 × 100 µm Micro-channels 245
5.3 Modeling and Optimization for TA 400 × 200 µm Micro-channels 247
5.4 Modeling and Optimization for TA 800 × 400 µm Micro-channels 250
5.5 Modeling and Optimization for TA 1000 × 500 µm Micro-channels 252
5.6 Summary of Multi-objective Optimization for Titanium Alloy 254
6 Modeling and Optimization for Aluminum Alloy 255
6.1 Modeling and Optimization for AA 100 × 50 µm Micro-channels 255
6.2 Modeling and Optimization for AA 200 × 100 µm Micro-channels 257
6.3 Modeling and Optimization for AA 400 × 200 µm Micro-channels 259
6.4 Modeling and Optimization for AA 800 × 400 µm Micro-channels 261
6.5 Modeling and Optimization for AA 1000 × 500 µm Micro-channels 263
6.6 Summary of Multi-objective Optimization for Aluminum Alloy 265
7 Concluding Remarks 266
8 Validations—Modeling and Optimization 268
1 Validation of Predictive Models of Nickel Alloy 268
1.1 Validation of Predictive Models of NA 100 × 50 µm Micro-channels 268
1.2 Validation of Predictive Models of NA 200 × 100 µm Micro-channels 271
1.3 Validation of Predictive Models of NA 400 × 200 µm Micro-channels 273
1.4 Validation of Predictive Models of NA 800 × 400 µm Micro-channels 276
1.5 Validation of Predictive Models of NA 1000 × 500 µm Micro-channels 278
1.6 Validation of Multi-objective Optimization for Nickel Alloy 281
2 Validation of Predictive Models of Titanium Alloy 281
3 Validation of Predictive Models of Aluminum Alloy 284
4 Concluding Remarks 285
9 Conclusions and Future Work Recommendations 286
1 Conclusions of UWLBMM 286
1.1 Conclusions of DLBMM 287
2 Future Work Recommendations 290
2.1 Future Work Recommendations for UWLBMM 290
2.2 Future Work Recommendations for DLBMM 291
Appendix A 292
Appendix B 340
References 353

Erscheint lt. Verlag 31.1.2017
Reihe/Serie Advanced Structured Materials
Zusatzinfo XXXII, 342 p. 210 illus., 189 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
Schlagworte AA 2024 alluminium alloy • aerospace turbine blades • Dry Laser Beam Micro-milling DLBMM • Inconel 718 nickel alloy • micro-channel heat exchangers • Nd:YAG Laser milling • Oversizing micro-channels • pulsating heat plates • Ti-6Al-4V titanium alloy • Under-water Laser Beam Micro-milling UWLBMM
ISBN-10 981-10-3602-0 / 9811036020
ISBN-13 978-981-10-3602-6 / 9789811036026
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 15,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Strömungsmechanik, Fahrdynamik, Thermomanagement, Akustik, …

von Thomas Schütz

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
219,00