Smart Structures and Materials (eBook)

Selected Papers from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials
eBook Download: PDF
2016 | 1st ed. 2017
VIII, 293 Seiten
Springer International Publishing (Verlag)
978-3-319-44507-6 (ISBN)

Lese- und Medienproben

Smart Structures and Materials -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the art in the field as well as generating inspiration for future ideas specifically on a multidisciplinary level. 

The scope of the Conference included topics related to the following areas:

Fundamentals of smart materials and structures; Modeling/formulation and characterization of smart actuators, sensors and smart material systems; Trends and developments in diverse areas such as material science including composite materials, intelligent hydrogels, interfacial phenomena, phase boundaries and boundary layers of phase boundaries, control, micro- and nano-systems, electronics, etc. to be considered for smart systems; Comparative evaluation of different smart actuators and sensors; Analysis of structural concepts and designs in terms of their adaptability to smart technologies; Design and development of smart structures and systems; Biomimetic phenomena and their inspiration in engineering; Fabrication and testing of smart structures and systems; Applications of smart materials, structures and related technology; Smart robots; Morphing wings and smart aircrafts; Artificial muscles and biomedical applications; Smart structures in mechatronics; and Energy harvesting. 

Preface 6
Contents 8
1 Role of the Structural Nonlinearity in Enhancing the Performance of a Vibration Energy Harvester Based on the Electrets Materials 10
Abstract 10
1.1 Introduction 10
1.2 Investigation 12
1.2.1 State-of-the-Art of the Design of a Electrets–Based Vibration Energy Harvester 12
1.2.2 Configurations of the Electrets–Based Vibration Energy Harvester 12
1.2.3 Goals of This Study 14
1.3 Analysis 15
1.3.1 A Basic Model of the Electrets–Based Vibration Energy Harvester 15
1.3.2 Modeling of Continuous Beam Configuration: Linear Approach 17
1.3.3 Modeling of Continuous Beam Configuration: Nonlinear Approach 20
1.4 Advantages of the Structural Nonlinearity in the Design of the Electrets-Based Energy Harvester 21
1.4.1 Stiffening Effect on a Clamped–Clamped Structure 21
1.4.2 Role of the Constraint Compliance on the Stiffening Effect 22
1.5 Some Design Criteria for the Electrets–Based Energy Harvester 24
1.5.1 Clamped-Sliding Configuration 24
1.5.2 Clamped-Clamped Configuration 26
1.5.3 Application of Additional Constraints 27
1.6 Conclusion 28
References 29
2 Numerical Analysis of Fracture of Pre-stressed Ferroelectric Actuator Taking into Account Cohesive Zone for Damage Accumulation 31
2.1 Introduction 32
2.2 Ferroelectric Materials Constitutive Behavior and Electromechanical Cyclic Cohesive Zone Model 33
2.3 Numerical Simulation 38
2.4 Conclusions 45
References 46
3 Modelling the Constitutive Behaviour of Martensite and Austenite in Shape Memory Alloys Using Closed-Form Analytical Continuous Equations 48
3.1 Introduction 49
3.2 SMA Model Base Equation 50
3.3 SMA Model Algorithm 53
3.4 Model Initialization: Parameter Identification 55
3.5 Model Parameter Update: Parameter Calculation for Austenite 56
3.5.1 Austenite Unloading 57
3.5.2 Austenite Reloading 59
3.6 Model Parameter Update: Parameter Calculation for Martensite 61
3.6.1 Martensite Unloading 62
3.6.2 Martensite Reloading 62
3.7 Experimental Validation and Discussion 63
3.7.1 Monotonic Loading and Unloading and Parameter Identification 64
3.7.2 Austenite Complete Cyclic Loading 65
3.7.3 Austenite Partial Cyclic Loading 67
3.7.4 Martensite Cyclic Loading 68
3.7.5 Experimental Validation on Different Wire Samples 69
3.8 Conclusion 71
References 72
4 Experimental Investigations of Actuators Based on Carbon Nanotube Architectures 74
4.1 Introduction 75
4.2 Experimental Set-Up 77
4.2.1 Set-Up of the Actuated Tensile Test and Test Procedure 78
4.2.2 Quality Assessment and Sample Preparation 80
4.2.3 Mathematical Formulae for Calculating Experimental Results 83
4.3 Results and Discussion 84
4.3.1 Quality Assessment of CNT-Based Architectures 85
4.3.2 Results of CNT-Papers Tested in Actuated-Tensile Mode 89
4.3.3 Results of CNT-Arrays Tested by Actuated Tensile Testing 95
4.4 Conclusion 100
References 100
5 Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems 103
Abstract 103
5.1 Introduction 103
5.2 Variance-Based Sensitivity Analysis of a Piezoelectric Beam 104
5.2.1 Stochastic Sensitivity Analysis 104
5.2.2 Mathematical Model of Piezoelectric Beam Dynamics 106
5.2.3 Control Design 108
5.2.4 Numerical Results of a Monte Carlo Simulation 109
5.3 Experimental Validation of Stochastic Sensitivity Analyses 111
5.3.1 Model-Based Experimental Design 111
5.3.2 Experimental Setup 112
5.3.3 Experimental Validation 113
5.4 Conclusions 117
References 118
6 Design of Control Concepts for a Smart Beam Structure with Sensitivity Analysis of the System 120
6.1 Introduction 121
6.2 The Smart Beam Structure 122
6.2.1 Finite Element Model 123
6.2.2 Model Order Reduction 124
6.3 Control Concepts 126
6.3.1 Linear Quadratic Regulator 126
6.3.2 Lead Control 127
6.4 Comparison of Control Concepts Applied to the Reference Smart Beam Structure 128
6.4.1 Bode Magnitude Plot 128
6.4.2 Step Response 129
6.5 Robustness Analysis of the Controllers 131
6.5.1 The Full Factorial Simulation 131
6.5.2 Results and Discussion 132
6.6 Conclusion 134
References 136
7 Adaptive Inductor for Vibration Damping in Presence of Uncertainty 138
7.1 Introduction 138
7.2 Linear RL Shunt 140
7.2.1 Optimal Tuning 142
7.3 Robustness of RL Shunt 144
7.3.1 Sensitivity to R 144
7.3.2 Sensitivity to ?e 145
7.4 Adaptive RL Shunt 145
7.4.1 Adaptation Law 145
7.4.2 Measurement of Q and x 147
7.4.3 Sensitivity of ?? 148
7.5 Experiments 149
7.5.1 Setup 149
7.5.2 Electrical Circuits 151
7.5.3 Results 152
7.6 Conclusion 155
References 156
8 Active Control of the Hinge of a Flapping Wing with Electrostatic Sticking to Modify the Passive Pitching Motion 157
8.1 Introduction 158
8.2 Passive Pitching Flapping Motion 159
8.2.1 Flapping Wing Design 159
8.2.2 Passive Pitching and Wing Kinematics 161
8.3 Electrostatically Controlled Hinge Theory 162
8.3.1 Proposed Elastic Hinge Design 162
8.3.2 Voltage-Induced Stresses Between Stacked Layers 163
8.3.3 Behavior of the Active Hinge During Large Deflections 164
8.3.4 Voltage-Dependent Hinge Properties 167
8.4 Equation of Motion of Passive Pitching Motion 168
8.5 Experimental Analysis 170
8.5.1 Realization of Wing with Active Hinge 170
8.5.2 Experimental Setup 171
8.5.3 Experimental Results 172
8.6 Numerical Analysis and Comparison to Experimental Results 174
8.7 Conclusions and Recommendations 176
References 177
9 Control System Design for a Morphing Wing Trailing Edge 179
Abstract 179
9.1 Introduction 180
9.2 System Architecture 181
9.3 Actuators Selection and Layout 183
9.4 Sensor System Layout 186
9.5 Control Logic 188
9.6 Results 191
9.7 Conclusions and Future Developments 195
Acknowledgements 195
References 196
10 Towards the Industrial Application of Morphing Aircraft Wings—Development of the Actuation Kinematics of a Droop Nose 198
Abstract 198
10.1 Introduction 199
10.2 Development of the Actuation Kinematics of a Droop Nose 199
10.3 Computational Modeling 201
10.3.1 Numerical Optimization 201
10.3.2 Geometrical Construction Method 204
10.4 Weight Estimation of the Mechanical Actuation System 208
10.5 Conclusions 209
Acknowledgements 210
References 210
11 Artificial Muscles Design Methodology Applied to Robotic Fingers 211
11.1 Introduction 212
11.2 Artificial Muscle Design Methodology 213
11.2.1 Particularized Methodology for Robotic Fingers 214
11.3 Under Actuated Robotic Finger ProMain-I 214
11.3.1 Kinematic Model of the ProMain-I Finger 215
11.3.2 Dynamic Model of the ProMain-I Finger 217
11.4 Experimental Set-Up 218
11.4.1 First Experiment: Measure of the Human Hand Pinch Force 219
11.4.2 Second Experiment: Measure of the Robotic Finger Pinch Force 220
11.5 Requirements and Characterization of the Artificial Muscle 221
11.5.1 Parameters Quantification 222
11.5.2 Material Selection 224
11.6 Conclusions 226
References 227
12 Methods for Assessment of Composite Aerospace Structures 228
Abstract 228
12.1 Introduction 229
12.2 Composite Samples 230
12.3 Electromechanical Impedance Method (EMI) 231
12.4 Laser Doppler Vibrometry 235
12.4.1 Vibration-Based Method 235
12.4.2 Guided Waves-Based Method 239
12.5 Terahertz Spectroscopy 240
12.6 Conclusions 243
Acknowledgements 244
References 245
13 Design Optimization and Reliability Analysis of Variable Stiffness Composite Structures 246
Abstract 246
13.1 Introduction 247
13.2 Discrete Material Optimization (DMO) 248
13.3 Problem Formulation 249
13.4 Optimization Strategy 250
13.4.1 Move Limit Strategy 252
13.4.2 Penalty Continuation Scheme 252
13.5 Reliability Analysis 253
13.5.1 Monte Carlo Simulation (MCS) Approach 253
13.5.2 First Order Reliability Method (FORM) 254
13.5.3 Stochastic Response Surface Method 255
13.6 Results and Discussion 255
13.6.1 Reliability Analysis Results 258
13.6.1.1 Reliability Analysis Using Tip Deflection Limit State 258
13.6.1.2 Reliability Analysis Using First-Ply Failure Limit State 260
13.7 Concluding Remarks 264
Acknowledgements 265
References 265
14 Robust Multi-objective Evolutionary Optimization-Based Inverse Identification of Three-Dimensional Elastic Behaviour of Multilayer Unidirectional Fibre Composites 267
Abstract 267
14.1 Introduction 268
14.2 Identifiable 3D Elastic Behaviours of Composites 270
14.3 Robust Multi-objective Evolutionary Optimization-Based Inverse Identification Methodology 275
14.4 Multilayer UD CFRP Composite Plate Elastic Behaviour Inverse Identification 278
14.4.1 Identifiable Three-Dimensional Elastic Behaviours Analyses 280
14.4.2 A Priori Sensitivity-Based Identifiable Behaviours Analyses 284
14.5 Summary Conclusions 288
Acknowledgement 289
Appendix A 289
Appendix B 292
Appendix C 292
References 293

Erscheint lt. Verlag 20.12.2016
Reihe/Serie Computational Methods in Applied Sciences
Zusatzinfo VIII, 293 p. 193 illus., 187 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Applications of Smart Technologies • eccomas • Smart Materials • Smart Robots • Smart Structures
ISBN-10 3-319-44507-3 / 3319445073
ISBN-13 978-3-319-44507-6 / 9783319445076
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99