Für diesen Artikel ist leider kein Bild verfügbar.

Materials and Process Systems for CO2 Capture – Modelling, Design, Control and Integration

Software / Digital Media
688 Seiten
2017
John Wiley & Sons Inc (Hersteller)
978-1-119-10641-8 (ISBN)
275,25 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: * Modeling of materials and processes based on chemical and physical principles * Design of materials and processes based on systematic optimization methods * Utilization of advanced control and integration methods in process and plant-wide operations The tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods.
In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.

Edited by ATHANASIOS I. PAPADOPOULOS, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Greece PANOS SEFERLIS, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece

About the Editors xvii


List of Contributors xix


Preface xxvii


Section 1 Modelling and Design of Materials 1


1 The Development of a Molecular Systems Engineering Approach to the Design of Carbon?�capture Solvents 3
Edward Graham, Smitha Gopinath, Esther Forte, George Jackson, Amparo Galindo, and Claire S. Adjiman


1.1 Introduction 3


1.2 Predictive Thermodynamic Models for the Integrated Molecular and Process Design of Physical Absorption Processes 6


1.3 Describing Chemical Equilibria with SAFT 16


1.4 Integrated Computer?�aided Molecular and Process Design using SAFT 24


1.5 Conclusions 29


List of Abbreviations 30


Acknowledgments 31


References 31


2 Methods and Modelling for Post?–combustion CO2 Capture 43
Philip Fosbøl, Nicolas von Solms, Arne Gladis, Kaj Thomsen, and Georgios M. Kontogeorgis


2.1 Introduction to Post?]combustion CO2 Capture: The Role of Solvents and Some Engineering Challenges 43


2.2 Extended UNIQUAC: A Successful Thermodynamic Model for CCS Applications 49


2.3 CO2 Capture using Alkanolamines: Thermodynamics and Design 60


2.4 CO2 Capture using Ammonia: Thermodynamics and Design 61


2.5 New Solvents: Enzymes, Hydrates, Phase Change Solvents 62


2.6 Pilot Plant Studies: Measurements and Modelling 69


2.7 Conclusions and Future Perspectives 69


List of Abbreviations 74


Acknowledgements 74


References 74


3 Molecular Simulation Methods for CO2 Capture and Gas Separation with Emphasis on Ionic Liquids 79
Niki Vergadou, Eleni Androulaki, and Ioannis G. Economou


3.1 Introduction 79


3.2 Molecular Simulation Methods for Property Calculations 83


3.3 Force Fields 85


3.4 Results and Discussion: The Case of the IOLICAP Project 87


3.5 Future Outlook 101


List of Abbreviations 102


Acknowledgments 103


References 103


4 Thermodynamics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 113
Peter T. Frailie, Jorge M. Plaza, and Gary T. Rochelle


4.1 Introduction 113


4.2 Model Description 114


4.3 Sequential Regression Methodology 115


4.4 Model Regression 115


4.5 Conclusions 134


List of Abbreviations 134


Acknowledgements 134


References 135


5 Kinetics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 137
Peter T. Frailie and Gary T. Rochelle


5.1 Introduction 137


5.2 Methodology 138


5.3 Results 143


5.4 Conclusions 150


List of Abbreviations 151


Acknowledgements 151


References 151


6 Uncertainties in Modelling the Environmental Impact of Solvent Loss through Degradation for Amine Screening Purposes in Post?]combustion CO2 Capture 153
Sara Badr, Stavros Papadokonstantakis, Robert Bennett, Graeme Puxty, and Konrad Hungerbuehler


6.1 Introduction 153


6.2 Oxidative Degradation 156


6.3 Environmental Impacts of Solvent Production 165


6.4 Conclusions and Outlook 167


List of Abbreviations 168


References 169


7 Computer?]aided Molecular Design of CO2 Capture Solvents and Mixtures 173
Athanasios I. Papadopoulos, Theodoros Zarogiannis, and Panos Seferlis


7.1 Introduction 173


7.2 Overview of Associated Literature 176


7.3 Optimization?–based Design and Selection Approach 178


7.4 Implementation 183


7.5 Results and Discussion 187


7.6 Conclusions 196


List of Abbreviations 196


Acknowledgements 197


References 197


8 Ionic Liquid Design for Biomass?–based Tri?–generation System with Carbon Capture 203
Fah Keen Chong, Viknesh Andiappan, Fadwa T. Eljack, Dominic C. Y. Foo, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng


8.1 Introduction 203


8.2 Formulations to Design Ionic Liquid for BECCS 205


8.3 An Illustrative Example 212


8.4 Conclusions 221


List of Abbreviations 222


References 225


Section 2 From Materials to Process Modelling, Design and Intensification 229


9 Multi?–scale Process Systems Engineering for Carbon Capture, Utilization, and Storage: A Review 231
M. M. Faruque Hasan


9.1 Introduction 231


9.2 Multi?–scale Approaches for CCUS Design and Optimization 233


9.3 Hierarchical Approaches 234


9.4 Simultaneous Approaches 237


9.5 Enabling Methods, Challenges, and Research Opportunities 242


List of Abbreviations 243


References 244


10 Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation 249
Xuezhong He, Daniel R. Nieto, Arne Lindbråthen, and May?–Britt Hägg


10.1 Introduction 249


10.2 Membranes for Gas Separation 250


10.3 Molecular Modeling of Gas Separation in Membranes 255


10.4 Process Simulation of Membranes for CO2 Capture 260


10.5 Future Perspectives 273


List of Abbreviations 274


Acknowledgments 276


References 276


11 Post?–combustion CO2 Capture by Chemical Gas�Liquid Absorption: Solvent Selection, Process Modelling, Energy Integration and Design Methods 283
Thibaut Neveux, Yann Le Moullec, and Éric Favre


11.1 Introduction 283


11.2 Solvent Influence 284


11.3 Process Modelling 286


11.4 Process Integration 291


11.5 Design Method 300


11.6 Conclusion 306


List of Abbreviations 308


References 308


12 Innovative Computational Tools and Models for the Design, Optimization and Control of Carbon Capture Processes 311
David C. Miller, Deb Agarwal, Debangsu Bhattacharyya, Joshua Boverhof , Yang Chen, John Eslick, Jim Leek, Jinliang Ma, Priyadarshi Mahapatra, Brenda Ng, Nikolaos V. Sahinidis, Charles Tong, and Stephen E. Zitney


12.1 Overview 311


12.2 Advanced Computational Frameworks 313


12.3 Case Study: Solid Sorbent Carbon Capture System 326


12.4 Summary 335


Acknowledgment 338


List of Abbreviations 338


References 339


13 Modelling and Optimization of Pressure Swing Adsorption (PSA) Processes for Post?]combustion CO2 Capture from Flue Gas 343
George N. Nikolaidis, Eustathios S. Kikkinides, and Michael C. Georgiadis


13.1 Introduction 343


13.2 Mathematical Model Formulation 346


13.3 PSA/VSA Simulation Case Studies 352


13.4 PSA/VSA Optimization Case Study 359


13.5 Conclusions 362


List of Abbreviations 365


Acknowledgements 366


References 367


14 Joule Thomson Effect in a Two?–dimensional Multi?]component Radial Crossflow Hollow Fiber Membrane Applied for CO2 Capture in Natural Gas Sweetening 371
Serene Sow Mun Lock, Kok Keong Lau, Azmi Mohd Shariff, and Yin Fong Yeong


14.1 Introduction 371


14.2 Methodology 373


14.3 Results and Discussion 384


14.4 Conclusion 393


List of Abbreviations 394


Acknowledgments 394


References 394


15 The Challenge of Reducing the Size of an Absorber Using a Rotating Packed Bed 399
Ming?]Tsz Chen, David Shan Hill Wong, and Chung Sung Tan


15.1 Motivation for Size Reduction 399


15.2 Rotating Packed Bed Technology 401


15.3 Experimental Work on CO2 Capture Using a Rotating Packed Bed 405


15.4 Modeling of CO2 Capture using a Rotating Packed Bed 409


15.5 Design of Rotating Packed Bed Absorbers and Real Work Comparison to Regular Packed Absorbers 410


15.6 Conclusions 417


List of Abbreviations 417


References 418


Section 3 Process Operation and Control 425


16 Plantwide Design and Operation of CO2 Capture Using Chemical Absorption 427
David Shan Hill Wong and Shi?]Shang Jang


16.1 Introduction 427


16.2 The Basic Process 428


16.3 Solvent Selection 429


16.4 Energy Consumption Targets 429


16.5 Steady?–state Process Modeling 431


16.6 Conceptual Process Integration 432


16.7 Column Internals 432


16.8 Dynamic Modeling 433


16.9 Plantwide Control 434


16.10 Flexible Operation 434


16.11 Water and Amine Management 435


16.12 SOx Treatment 436


16.13 Monitoring 436


16.14 Conclusions 437


List of Abbreviations 437


References 437


17 Multi?–period Design of Carbon Capture Systems for Flexible Operation 447
Nial Mac Dowell and Nilay Shah


17.1 Introduction 447


17.2 Evaluation of Flexible Operation 451


17.3 Scenario Comparison 457


17.4 Conclusions 459


List of Abbreviations 460


Acknowledgements 460


References 461


18 Improved Design and Operation of Post?–combustion CO2 Capture Processes with Process Modelling 463
Adekola Lawal, Javier Rodriguez, Alfredo Ramos, Gerardo Sanchis, Mario Calado, Nouri Samsatli, Eni Oko, and Meihong Wang


18.1 Introduction 463


18.2 The gCCS Whole?–chain System Modelling Environment 464


18.3 Typical Process Design Considerations in a Simulation Study 467


18.4 Safety Considerations: Anticipating Hazards 477


18.5 Process Operating Considerations 479


18.6 Conclusions 497


List of Abbreviations 498


References 498


19 Advanced Control Strategies for IGCC Plants with Membrane Reactors for CO2 Capture 501
Fernando V. Lima, Xin He, Rishi Amrit, and Prodromos Daoutidis


19.1 Introduction 501


19.2 Modelling Approach 503


19.3 Design and Simulation Conditions 507


19.4 Model Predictive Control Strategies 508


19.5 Closed?–loop Simulation Results 512


19.6 Conclusions 518


List of Abbreviations 518


Acknowledgements 519


References 519


20 An Integration Framework for CO2 Capture Processes 523
M. Hossein Sahraei and Luis A. Ricardez–Sandoval


20.1 Introduction 523


20.2 Automation Framework and Syntax 525


20.3 CO2 Capture Plant Model 528


20.4 Case Studies 530


20.5 Conclusions 540


List of Abbreviations 541


References 541


21 Operability Analysis in Solvent?–based Post?–combustion CO2 Capture Plants 545
Theodoros Damartzis, Athanasios I. Papadopoulos, and Panos Seferlis


21.1 Introduction 545


21.2 Framework for the Analysis of Operability 548


21.3 Framework Implementation 552


21.4 Results and Discussion 556


21.5 Conclusions 566


List of Abbreviations 567


Acknowledgments 567


References 567


Section 4 Integrated Technologies 571


22 Process Systems Engineering for Optimal Design and Operation of Oxycombustion 573
Alexander Mitsos


22.1 Introduction 573


22.2 Pressurized Oxycombustion of Coal 575


22.3 Membrane?–based Processes 578


22.4 Conclusions and Future Work 585


List of Abbreviations 585


Acknowledgments 585


References 586


23 Energy Integration of Processes for Solid Looping CO2 Capture Systems 589
Pilar Lisbona, Yolanda Lara, Ana Martínez, and Luis M. Romeo


23.1 Introduction 589


23.2 Internal Integration for Energy Savings 592


23.3 External Integration for Energy Use 597


23.4 Process Symbiosis 601


23.5 Final Remarks 605


List of Abbreviations 605


References 605


24 Process Simulation of a Dual?–stage Selexol Process for Pre?–combustion Carbon Capture at an Integrated Gasification Combined Cycle Power Plant 609
Hyungwoong Ahn


24.1 Introduction 609


24.2 Configuration of an Absorption Process for Pre?–combustion Carbon Capture 610


24.3 Solubility Model 616


24.4 Conventional Dual?–stage Selexol Process 619


24.5 Unintegrated Solvent Cycle Design 624


24.6 95% Carbon Capture Efficiency 625


24.7 Conclusions 626


List of Abbreviations 627


References 627


25 Optimized Lignite?–fired Power Plants with Post?–combustion CO2 Capture 629
Emmanouil K. Kakaras, Antonios K. Koumanakos, and Aggelos F. Doukelis


25.1 Introduction 629


25.2 Reducing the Energy Efficiency Penalty 630


25.3 Optimized Plants with Amine Scrubbing: Greenfield Case 631


25.4 Oxyfuel and Amine Scrubbing Hybrid CO2 Capture 635


25.5 Conclusions 645


List of Abbreviations 645


References 645


Index 649

Erscheint lt. Verlag 10.3.2017
Verlagsort New York
Sprache englisch
Maße 150 x 250 mm
Gewicht 666 g
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik
ISBN-10 1-119-10641-9 / 1119106419
ISBN-13 978-1-119-10641-8 / 9781119106418
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich