Robotics in Education (eBook)

Research and Practices for Robotics in STEM Education
eBook Download: PDF
2016 | 1st ed. 2017
XI, 289 Seiten
Springer International Publishing (Verlag)
978-3-319-42975-5 (ISBN)

Lese- und Medienproben

Robotics in Education -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This proceedings volume showcases the latest achievements in research and development in Educational Robotics presented at the 7th International Conference on Robotics in Education (RiE) held in Vienna, Austria, during April 14-15, 2016. The book offers a range of methodologies for teaching robotics and presents various educational robotics curricula. It includes dedicated chapters for the design and analysis of learning environments as well as evaluation means for measuring the impact of robotics on the students' learning success. Moreover, the book presents interesting programming approaches as well as new applications, the latest tools, systems and components for using robotics. The presented applications cover the whole educative range, from elementary school to high school, college, university and beyond, for continuing education and possibly outreach and workforce development. The book provides a framework involving two complementary kinds of contributions: on the one hand on technical aspects and on the other hand on matters of didactic.

 

Preface 6
Organization of RiE 2016 8
Co-Chairpersons 8
International Program Committee 8
Local Conference Organization 9
Contents 10
Didactic and Methodologies for Teaching Robotics 13
1 Activity Plan Template: A Mediating Tool for Supporting Learning Design with Robotics 14
Abstract 14
1 Introduction 15
2 Theoretical Background 16
3 Developing an Activity Plan Template for Educational Robotics 17
3.1 Identifying Best Practices 17
3.2 First Version of the Activity Plan Template 18
4 Conclusion 23
Acknowledgments 23
References 24
V-REP and LabVIEW in the Service of Education 25
1 Introduction 25
2 Related Work 26
3 Motivation and Background 26
3.1 V-REP 27
3.2 LabVIEW 27
4 Course Description 27
4.1 The Role of Selected Software 28
4.2 Modelling Basics 28
4.3 Interfacing V-REP with LabVIEW 30
4.4 Workflow and Educational Values 31
4.5 Survey 33
5 Final Remarks 34
References 36
Applied Social Robotics---Building Interactive Robots with LEGO Mindstorms 38
1 Introduction 38
2 Related Courses and Teaching Methods 39
3 Previous Courses 41
4 The Idea with a Goal: Applied Social Robotics 42
5 Structure of the Course 43
5.1 Tamagotchi: Behaviors of a Small Toy 44
5.2 The Group Project and the Results 45
5.3 Evaluation of the Course 47
6 Lessons Learned 48
References 49
Offering Multiple Entry-Points into STEM for Young People 50
1 Introduction 50
2 Practical Robotics Institute Austria 52
3 Young People Engaging in STEM 53
3.1 Entry Points for Primary and Middle School Students 54
3.2 Entry Points for High School Students 55
3.3 Entry Points for University Students 57
4 Young People Engaging in Research 57
5 Impact 58
6 Conclusion 59
References 59
Educational Robotics Curricula 62
How to Teach with LEGO WeDo at Primary School 63
1 Introduction 63
2 Research Methodology 64
3 Our Eight Activities 64
3.1 Hello Robot---Activity 1 65
3.2 Building and Programming Small Airplane---Activity 2 65
3.3 What Will Transport Look Like in the Future?---Activity 3 66
3.4 Rafting---Activity 4 66
3.5 Ventilator---Activity 5 67
3.6 Remembering the Coding the Ventilator---Activity 6 68
3.7 The Administrator of Windmill---Activity 7 68
3.8 What Did We Learn?---Activity 8 68
4 Conclusion 69
References 69
Using Modern Software and the ICE Approach When Teaching University Students Modelling in Robotics 71
1 Introduction 71
2 The Course and Its Hardware 72
2.1 Course Work at ICE Connections Level 73
2.2 Course Work at Extensions Level---Project Work 74
2.3 Student Feedback from Course Evaluation 75
3 Discussion 76
References 76
7 Developing Extended Real and Virtual Robotics Enhancement Classes with Years 10–13 77
Abstract 77
1 Introduction 77
2 Background 79
3 Research and Development Framework 80
3.1 Research Methodology 80
3.2 Pedagogical Framework 80
3.3 Choice of Technology 81
3.4 Class Design 82
4 Performance and Feedback on Classes 83
4.1 General Findings 83
4.2 Feedback 85
4.3 Impact of Class on Students with Autism 86
5 Discussion 87
References 88
Project Oriented Approach in Educational Robotics: From Robotic Competition to Practical Appliance 90
1 Introduction 90
2 Project Oriented Approach to Education 91
3 Approach Results and Practical Appliances 93
4 Case Study: Waste Sensor 95
5 Conclusion 100
References 101
9 ER4STEM Educational Robotics for Science, Technology, Engineering and Mathematics 102
Abstract 102
1 Introduction 103
2 Educational Robotics 103
3 The ER4STEM Project 105
4 Conclusion 107
Acknowledgments 107
References 107
Design and Analysis of Learning Environments 109
The Educational Robotics Landscape Exploring Common Ground and Contact Points 110
1 Introduction 110
2 Educational Robotics Café 111
2.1 Method 111
2.2 Procedure 111
2.3 Analysis 113
3 Discussion 113
3.1 Robots 113
3.2 Teachers and Schools 113
3.3 Society, Politics and Media 114
3.4 Method ``Educational Robotics Café'' 114
4 Conclusions 115
5 Outlook: Tagging Approach 116
References 116
A Workshop to Promote Arduino-Based Robots as Wide Spectrum Learning Support Tools 117
1 Introduction 117
2 Structure of the Workshop 119
3 The Instrument 120
3.1 The Tool: Why Arduino 120
3.2 Programming Languages 121
4 Activities 122
4.1 Primary School Activity Examples: ``Macchina Scribacchina'' and an Example of Activity with MBot 122
4.2 Junior High School Activity Example: The Smart Lamp 123
4.3 High School Activity Example: Ecological Wake up and Sunflower Robot 124
5 Evaluation of the Workshop: Preliminary Considerations 125
5.1 The Evaluation Tool 125
5.2 The Role of the (Curricular) Teacher 126
5.3 Preliminary Results 127
6 Conclusions 128
References 128
12 Robotics in School Chemistry Laboratories 130
Abstract 130
1 Introduction 130
2 Conceptual Framework 131
3 Robotized Laboratory Environment 132
4 The Study 133
5 Learning Process 133
6 Learning Engagement 135
7 Conclusion 137
References 138
Breeding Robots to Learn How to Rule Complex Systems 140
1 Introduction 140
2 A Robotic System to Breed Robots: BrainFarm 141
3 The BrainFarm Lab with Children 143
3.1 Partecipants 143
3.2 Lab Scheduling 143
3.3 Comments on BrainFarm Lab 144
References 145
A Thousand Robots for Each Student: Using Cloud Robot Simulations to Teach Robotics 146
1 Introduction 146
2 Using Simulations for Teaching Robotics 147
2.1 Advantages of Using Simulators 149
2.2 Drawbacks of Using Simulators 150
3 Using Web Based Simulations for Teaching 151
3.1 Advantages of Web Based Simulators 151
3.2 Drawbacks 152
4 A Case Study: The Construct Web Simulation System 152
4.1 Sending Simulation Files to Students 154
4.2 Sharing Simulation with Teacher 154
4.3 Integrated Development Environment 154
4.4 Engage Students Through Simulation Contests 155
5 Proposing an Optimized Robotics Teaching Environment 155
6 Conclusion 156
References 158
Technologies for Educational Robotics 159
15 Networking Extension Module for Yrobot—A Modular Educational Robotic Platform 160
Abstract 160
1 Introduction 160
2 RF Communication Modules 163
3 Communication Module Y-WiFi 163
3.1 Operation Modes of Y-WiFi Module 164
4 RF Communication Modules Y-Bluetooth and Y-ZigBee 166
5 Conclusion 167
References 167
Aeris---Robots Laboratory with Dynamic Environment 169
1 Introduction 169
1.1 History of Robots on DTC 169
1.2 Standard Robot Playground 171
1.3 Dynamic Robot Playground 171
1.4 Related Work 171
2 Aeris System 172
2.1 Aeris Parts 172
2.2 Platform for New Dynamic Playground---RGB Sensors and LCD Display 174
2.3 Aeris Supervising Control and Simulation Center 175
2.4 Possibilities and Limitations 176
2.5 Actual State and Future Work 177
2.6 Aeris System in Teaching Process 179
3 Conclusion 179
References 180
UNC++Duino: A Kit for Learning to Program Robots in Python and C++ Starting from Blocks 181
1 Introduction 181
2 Previous Work 183
3 Hardware: The Robotic Kit 184
4 Software: Programming with Blocks, Python and C++ 185
5 Activities for Different Age-Groups in the Classroom 188
6 Discussion and Conclusions 190
References 191
18 Usability Evaluation of a Raspberry-Pi Telepresence Robot Controlled by Android Smartphones 193
Abstract 193
1 Introduction 193
2 Android-Controlled Telepresence Robot Using Raspberry Pi 195
2.1 The ACTR Prototype 195
2.2 ACTR Robot Usage Scenario 196
2.3 User Interface Design 196
3 Design of Usability Evaluation Experiments 197
3.1 Participants 197
3.2 Method 198
3.3 Measurement and Data Analysis 198
4 Experimental Results and Discussion 199
4.1 Efficiency 199
4.2 Satisfaction 200
4.3 Acceptability 201
4.4 Discussion 202
5 Related Work 203
6 Conclusion and Future Work 204
Acknowledgments 204
References 204
19 On the Design and Implementation of a Virtual Machine for Arduino 206
Abstract 206
1 Introduction 206
2 Related Work 208
3 Design Principles 210
4 Implementation 211
5 Example 213
6 Limitations 215
7 Future Work 216
8 Conclusion 216
References 217
Model-Based Design of a Competition Car 218
1 Introduction 218
2 The Freescale Cup Competition Rules 219
3 Modelling 222
3.1 Electronic Differential 222
3.2 Controller Design 222
4 Conclusion 226
References 227
Measuring the Impact of Robotics on Students’ Learning 229
21 Student-Robot Interactions in Museum Workshops: Learning Activities and Outcomes 230
Abstract 230
1 Introduction 230
2 The Workshop Outline 231
3 The Study 232
3.1 Richmond’s Model of Systems Thinking 235
3.2 Method 235
3.3 Specific Features of Systems Thinking 235
3.4 Worksheets as Instructional and Research Tools 235
4 Findings 238
5 Conclusions 240
Acknowledgments 240
References 240
22 Robot Moves as Tangible Feedback in a Mathematical Game at Primary School 242
Abstract 242
1 Introduction 242
2 Theoretical Framework 243
2.1 Handling and Tangible Devices 243
2.2 Feedback 244
3 Description of the Game 245
4 Research Questions 247
5 Methodology: Participants and Experimental Setting 247
6 Results 249
6.1 Interpretation of the Game Board and the Moves of the Robot 249
6.2 Involvement and Goals of Pupils During the Play 250
6.3 “Trial and Error” or “Compute and Check” Strategies 250
6.4 Effects of the Robot Moves as Feedback on the Pupils’ Strategies 251
7 Conclusion 252
References 253
23 Personalizing Educational Game Play with a Robot Partner 255
Abstract 255
1 Introduction 256
2 Experimental Design 257
2.1 Study Setup 257
2.2 Competence Levels 258
2.3 Participants 258
2.4 Observational Protocol 259
2.5 Experimental Procedure 260
2.6 Data Collection 260
3 Results 261
3.1 Qualitative Analysis of the Robot Child Interaction 261
3.2 Reliability of Recording 262
3.3 Levels of Social Competence 262
3.4 Gaze Direction 263
4 Conclusion 264
References 265
24 Robot as Tutee 267
Abstract 267
1 Introduction 267
2 Questions and Learning 268
3 The Learning Environment 269
4 Features of Student as Tutor 270
5 Features of Robot as Tutee 271
6 Conclusion and Future Work 272
References 272
25 Concept Inventories for Quality Assurance of Study Programs in Robotics 274
Abstract 274
1 Introduction 274
2 Quality Assurance of Study Programs 275
3 Concept Inventories as a Means of Quality Assurance 277
4 Overview Over the Robotics Concept Inventory 278
4.1 Evaluating the Learning Gain 279
4.2 Comparing Student Groups 280
5 Management of a Study Program Using the Robotics Concept Inventory 283
6 Conclusions and Outlook 283
References 283

Erscheint lt. Verlag 4.10.2016
Reihe/Serie Advances in Intelligent Systems and Computing
Zusatzinfo XI, 289 p. 106 illus., 96 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Maschinenbau
Schlagworte Didactic in Educational Robotics • Educational Robot Design and Programming • educational robotics • Innovative Learning Approach • Project-based learning • Robotics Curricula • Robotics in Schools • STEM Disciplines • Student Engineering Competitions
ISBN-10 3-319-42975-2 / 3319429752
ISBN-13 978-3-319-42975-5 / 9783319429755
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90