Alternative Propulsion for Automobiles (eBook)

(Autor)

eBook Download: PDF
2016 | 1st ed. 2017
XIII, 336 Seiten
Springer International Publishing (Verlag)
978-3-319-31930-8 (ISBN)

Lese- und Medienproben

Alternative Propulsion for Automobiles - Cornel Stan
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book presents - based on the most recent research and development results worldwide -  the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure.

The book presents summarized data about vehicles with electric and hybrid propulsion.

The propulsion of future cars will be marked by diversity - from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles. 



Professor Cornel Stan is Chairman of the Research and Technology Association at the West Saxon University of Zwickau, Germany, since 1994. He received the Diploma in Aeronautical Engineering from the Technical University of Bucharest, Romania in 1976, the Ph.D. in Internal Combustion Engines in 1984 from the University of Zwickau, Germany and the Doctor of Sciences in Automotive Engineering from the same University in 1989.
He gives lectures in Applied Thermodynamics, Internal Combustion Engines and Alternative Propulsion Systems at the West Saxon University of Zwickau, Germany as well as in the Universities of Paris (F), Pisa (I), Perugia (I), Kronstadt (Ro), Berkeley (USA). His research fields comprise the Automotive Propulsion Systems, the Direct Injection Systems, the Simulation of Thermodynamic Processes, Combustion Processes, Alternative Fuels and the Energy Management on Board of Automobiles. He is author or co-author of 27 books in Germany and in the USA as well as of 150 technical papers and 40 patents (Stand 2014). Cornel Stan is Honorary Professor and Doctor Honoris Causa of the University Transilvania of Brasov, Romania; Russel Severance Springer Professor of Mechanical Engineering at the Berkeley University of California, USA and Fellow of SAE International.

Professor Cornel Stan is Chairman of the Research and Technology Association at the West Saxon University of Zwickau, Germany, since 1994. He received the Diploma in Aeronautical Engineering from the Technical University of Bucharest, Romania in 1976, the Ph.D. in Internal Combustion Engines in 1984 from the University of Zwickau, Germany and the Doctor of Sciences in Automotive Engineering from the same University in 1989. He gives lectures in Applied Thermodynamics, Internal Combustion Engines and Alternative Propulsion Systems at the West Saxon University of Zwickau, Germany as well as in the Universities of Paris (F), Pisa (I), Perugia (I), Kronstadt (Ro), Berkeley (USA). His research fields comprise the Automotive Propulsion Systems, the Direct Injection Systems, the Simulation of Thermodynamic Processes, Combustion Processes, Alternative Fuels and the Energy Management on Board of Automobiles. He is author or co-author of 27 books in Germany and in the USA as well as of 150 technical papers and 40 patents (Stand 2014). Cornel Stan is Honorary Professor and Doctor Honoris Causa of the University Transilvania of Brasov, Romania; Russel Severance Springer Professor of Mechanical Engineering at the Berkeley University of California, USA and Fellow of SAE International.

Preface 6
Contents 8
List of Formula Symbols 12
1: Mobility: Conditions, Requirements, and Scenarios 15
1.1 Development Conditions 15
1.2 Development Requirements 26
1.2.1 Energy Availability 27
1.2.2 Environmental Impact of Energy Conversion 31
1.2.3 Technical Implementation 35
1.3 Development Scenarios for On-board Energy Management 38
2: Thermal Engines 51
2.1 Thermodynamic Cycles: Potential and Limitations 51
2.1.1 Carnot Cycle 53
2.1.2 Stirling Cycle 55
2.1.3 Otto Cycle 57
2.1.4 Diesel Cycle 60
2.1.5 Seiliger Cycle 62
2.1.6 Joule Cycle 63
2.1.7 Ackeret-Keller (Ericsson) Cycle 65
2.2 Four-Stroke Piston Engines: Potential and Trends 67
2.2.1 Optimization and Adaptation of Engine Processes: Future Internal Combustion Engines as Function Suppliers Around the Com... 67
2.2.1.1 Increase in the Effective Energy Density 72
2.2.1.2 Engine Speed-Related Pressure Waves in Intake and Exhaust Ducts 80
2.2.1.3 Variable Valve Control 82
2.2.1.4 Internal Mixture Formation by Direct Fuel Injection in SI and CI Engines 97
2.2.1.5 Control of the Combustion Process in SI and CI Engines by Self-Ignition Techniques 124
2.2.1.6 Increase in Compression Ratio 130
2.2.1.7 Management of Engine Cooling 131
2.2.2 Convergence of Processes in SI and CI Engines 133
2.3 Alternative Thermal Engines 139
2.3.1 Two-stroke Engines 139
2.3.2 Wankel Engines 146
2.3.3 Thermal Turbomachines (Gas Turbines) 151
2.3.4 Stirling Engines 159
3: Alternative Fuels 164
3.1 Energy Sources: Resources, Potential, and Properties 164
3.2 Compressed Natural Gas 173
3.2.1 Properties 173
3.2.2 Storage on Board 173
3.2.3 Mixture Formation 175
3.2.4 Applications and Results 177
3.3 Liquefied Petroleum Gas 179
3.3.1 Production 179
3.3.2 Properties 179
3.3.3 Storage on Board 179
3.3.4 Mixture Formation 181
3.3.5 Applications and Results 183
3.4 Alcohols: Methanol and Ethanol 183
3.4.1 Production 183
3.4.2 Properties 187
3.4.3 Storage on Board 187
3.4.4 Mixture Formation and Combustion 187
3.4.4.1 Technical Feasibility and Engine Parameters 190
3.4.4.2 Adaptation of the Injection System 190
3.4.4.3 Adaptation of the Mixture Formation 190
3.4.5 Applications and Results 191
3.4.6 Applications and Potentialities 198
3.5 Hydrogen 200
3.5.1 Production 200
3.5.2 Properties 202
3.5.3 Storage 203
3.5.4 Mixture Formation 205
3.5.5 Application and Results 207
3.6 Vegetable Oils 208
3.6.1 Production 208
3.6.2 Properties 211
3.6.3 Storage 212
3.6.4 Mixture Formation 212
3.6.5 Applications and Results 213
3.7 Dimethylether 214
3.7.1 Production 214
3.7.2 Properties 215
3.7.3 Storage 215
3.7.4 Mixture Formation 215
3.7.5 Applications and Results 215
3.8 Synthetic Fuels 217
4: Electric Propulsion Systems 220
4.1 Electric Mobility 220
4.2 Motors 222
4.3 Accumulators of Electrical Energy: Batteries 228
4.4 Electric Energy Conversion on Board: Fuel Cells 233
4.5 Automobiles with Electric Propulsion 250
5: Combinations of Propulsion Systems, Energy Sources, Energy Converters, and Storage 269
5.1 Configuration of the Propulsion System 269
5.2 Propulsion by Motor, With a Thermal Engine as Current Generator: Serial Hybrids 270
5.2.1 System Configuration 277
5.3 Propulsion by Internal Combustion and/or Motor: Parallel and Mixed Hybrids 290
5.3.1 Hybrid Classes 290
5.3.2 Parallel Full Hybrid with One Piston Engine and One Motor, Interconnected by Means of a Planetary Gear: Toyota Prius, Ho... 293
5.3.3 Parallel Full Hybrid with One Piston Engine and One Motor, Coupled by a Planetary Gear, with an Additional, Separate Pro... 298
5.3.4 Full Hybrid with One Piston Engine and One Motor along a Propulsion Axle: Porsche 300
5.3.5 Full Hybrid with One Piston Engine and Two Motors along a Propulsion Axle: Daimler 302
5.3.6 Full Hybrid with Motors Within the Gear of the Piston Engine (Two-Mode Hybrid): BMW, Daimler, GM 303
5.3.7 Hybrid with Propulsion of One Vehicle Axle by an Engine and of the Second Axle by a Motor, Without Mechanical Coupling o... 311
5.3.8 Overview of the Present Parallel and Mixed Hybrid Propulsion Systems 312
5.4 Plug-In Hybrid Propulsion 323
6: Energy Management in the Automobile as a Complex System 333
6.1 Upper Class of Cars, SUVs 334
6.2 Middle Class of Cars 334
6.3 Compact Class, City Cars 335
6.4 City Cars with Range Extender 337
6.5 Low-Price Multipurpose Cars 339
6.6 Automotive Engineering and Manufacturing 339
Bibliography 345
Supplementary Bibliographic Sources 347

Erscheint lt. Verlag 5.8.2016
Zusatzinfo XIII, 336 p. 300 illus., 183 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte alternative propulsion • electric car • fuel cell • hybrid propulsion • plug in
ISBN-10 3-319-31930-2 / 3319319302
ISBN-13 978-3-319-31930-8 / 9783319319308
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99