Carbon Nanotubes for Interconnects (eBook)

Process, Design and Applications
eBook Download: PDF
2016 | 1st ed. 2017
XII, 333 Seiten
Springer International Publishing (Verlag)
978-3-319-29746-0 (ISBN)

Lese- und Medienproben

Carbon Nanotubes for Interconnects -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits.

Aida Todri-Sanial is a research scientist at the French National Center for Scientific Research (CNRS) attached to Laboratoire of Informatique, Robotique, Microelectronics of Montpellier (LIRMM) in junction with University of Montpellier 2, France. She is also a permanent faculty member in the Microelectronics department at LIRMM. She received her Ph.D. in Electrical & Computer Engineering at the University of California Santa Barbara, USA in 2009. She received the B.S. and M.S. degrees from Bradley University, IL, USA and California State University at Long Beach, CA, USA in 2001 and 2003, respectively. From August 2009 to September 2010, she was with the Computing Division at Fermilab, IL, USA where she was the recipient of John Bardeen Fellowship Award. Previously, she has held several summer and visiting research positions: STMicroelectronics, FR (2008), IBM TJ Watson Research Center, Yoktown, NY, USA (2006, 2007), Mentor Graphics Corporation, CA, USA (2005), and Cadence Design Systems, CA, USA (2002-2004).

Aida Todri-Sanial is a research scientist at the French National Center for Scientific Research (CNRS) attached to Laboratoire of Informatique, Robotique, Microelectronics of Montpellier (LIRMM) in junction with University of Montpellier 2, France. She is also a permanent faculty member in the Microelectronics department at LIRMM. She received her Ph.D. in Electrical & Computer Engineering at the University of California Santa Barbara, USA in 2009. She received the B.S. and M.S. degrees from Bradley University, IL, USA and California State University at Long Beach, CA, USA in 2001 and 2003, respectively. From August 2009 to September 2010, she was with the Computing Division at Fermilab, IL, USA where she was the recipient of John Bardeen Fellowship Award. Previously, she has held several summer and visiting research positions: STMicroelectronics, FR (2008), IBM TJ Watson Research Center, Yoktown, NY, USA (2006, 2007), Mentor Graphics Corporation, CA, USA (2005), and Cadence Design Systems, CA, USA (2002-2004).

Preface 8
Contents 10
Contributors 12
Part I Process and Design 14
1 Overview of the Interconnect Problem 15
1.1 Overview 15
1.2 The Interconnect Structure Design Challenge 17
1.3 Intrinsic Interconnect Parameters 18
1.3.1 Interconnect Resistance 18
1.3.2 Interconnect Capacitance 20
1.4 Impact on Interconnect Metrics 22
1.5 Impact at the Circuit Level 25
1.5.1 Physical Design of Circuit Blocks at Future Technology Generations 27
1.5.1.1 Interconnect and Standard Cell Definitions 28
1.5.1.2 Experiment Setup and Results 31
1.5.1.3 Critical Path Delay 31
1.5.1.4 Power Dissipation 33
1.5.2 Impact of Vias 34
1.6 Impact at the Full-chip Level 36
1.6.1 System Modeling Based on Wirelength Distribution 37
1.6.1.1 Resistivity Impact on the Number of Metal Levels 39
1.6.1.2 Barrier Thickness Impact on the Number of Metal Levels 41
1.6.1.3 Interconnect Variability Impact on the Number of Metal Levels 42
1.7 Reliability Challenges 43
1.7.1 Cu Electromigration 44
1.7.2 Time-Dependent Dielectric Breakdown 44
1.8 Conclusion and Outlook 45
References 46
2 Overview of Carbon Nanotube Interconnects 49
2.1 Introduction 49
2.2 Carbon Nanotubes and Graphene Nanoribbon Interconnects 51
2.2.1 CNTs Interconnects 51
2.2.2 Graphene Nanoribbon Interconnects 52
2.3 Challenges for CNT-Based and Graphene Nanoribbon Interconnects 53
2.3.1 Challenges for CNT-Based Interconnects 53
2.3.1.1 High Density Synthesis of CNTs-Based Via Interconnects 54
2.3.1.2 Low Temperature Synthesis of CNT-Based Via Interconnects 57
2.3.1.3 CNT-Based Horizontal Interconnects 60
2.3.1.4 A High Quality Contact of CNT-Metal 62
2.3.1.5 Selective Growth of Metallic CNTs 65
2.3.1.6 CNTs-Based Through-Silicon-Via for 3D Integration 67
2.3.2 The Challenges for Graphene Nanoribbon Interconnects 69
2.3.2.1 Graphene Fabrication 69
2.3.2.2 Fabrication of Graphene Nanoribbon Interconnects 70
2.3.2.3 Multi-Layer GNR Interconnects 71
2.3.2.4 Performance and Reliability of GNR Interconnects 73
2.3.2.5 GNR Interconnects in All-Graphene Circuits 75
2.4 Conclusion 77
References 77
3 Overview of Carbon Nanotube Processing Methods 93
3.1 Introduction 93
3.2 Growth of Carbon Nanotubes 94
3.3 Chemical Vapor Deposition Growth 97
3.4 Vertical Alignment of Carbon Nanotubes 98
3.5 Hidden Growth Parameter 100
3.6 Horizontal Alignment of Carbon Nanotubes 102
3.7 Carbon Nanotubes: Copper Composite Interconnects 104
3.8 Macroscopic Carbon Nanotube Interconnects: Cables and Wires 106
3.9 Outlook 110
References 111
4 Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization 113
4.1 Introduction 113
4.2 Band Structure of Carbon Nanotubes and Energy Subbands 114
4.3 Electrical Conductivity of Isolated CNTs, from DC to THz Range 116
4.3.1 Transport Equation 116
4.3.2 Equivalent Parameters for an Isolated CNT 121
4.3.3 Plasmon Resonances in CNTs 123
4.4 Equivalent Resistivity for a CNT Bundle from DC to THz 127
4.4.1 A Bundle of CNTs Without Intershell Coupling 127
4.4.2 A Bundle of CNTs in Presence of Intershell Coupling 130
4.5 Electrical Conductivity of CNTs up to the Optical Range 134
4.6 Conclusions 138
References 138
5 Computational Studies of Thermal Transport Properties of Carbon Nanotube Materials 141
5.1 Introduction 141
5.2 Atomistic Modeling of Thermal Conductivity of Individual CNTs 144
5.3 Atomistic Modeling of Inter-Tube Contact Conductance 149
5.4 Mesoscopic Modeling of Thermal Transport in CNT Network Materials 155
5.5 Derivation of Scaling Laws and Monte Carlo Simulations 161
5.6 Concluding Remarks 164
References 166
Part II Applications 174
6 Overview of Carbon Nanotubes for Horizontal On-Chip Interconnects 175
6.1 Introduction 175
6.2 Brief Theoretical Reminder 176
6.3 CNT Density in Interconnections 178
6.4 CNT Integration in Horizontal Lines 181
6.5 CNT Contacts 185
6.5.1 End-Bonded Contacts 186
6.5.2 Side-Bonded Contacts 188
6.6 Performances of CNT Lines 190
6.7 Local Interconnects Made of Individual CNTs 194
6.8 CNT Doping 199
6.9 Conclusion 199
References 200
7 Carbon Nanotubes as Vertical Interconnects for 3D Integrated Circuits 205
7.1 Introduction 205
7.2 Requirements for CNT Integration 208
7.3 CNT for Vertical Interconnects 209
7.4 Carbon Nanotube TSV 213
7.5 Towards the Integration of CNT with Monolithic 3D IC 215
7.6 Conclusion and Future Prospects 218
References 219
8 Carbon Nanotubes as Microbumps for 3D Integration 224
8.1 Introduction 224
8.1.1 Level 0 of Interconnection Using CNTs 225
8.1.1.1 Local Interconnections Using CNTs [3] 226
8.1.1.2 Semi-Global Interconnections Using CNTs 226
8.1.1.3 Global Interconnections Using CNTs 227
8.1.1.4 Conclusion 227
8.1.2 Level 1 of Interconnection Using CNTs [4, 6–8] 228
8.1.2.1 Wire Bonding 228
8.1.2.2 Hot-Via [9–11] 229
8.1.2.3 Flip Chip 229
8.2 CNT-Based Microbumps 231
8.2.1 CNT Growth on Gold Metallization 232
8.2.1.1 Test Structure 232
8.2.1.2 Results and Discussion 233
8.2.2 RF Flip Chip Test Structure Based on CNT Bumps 235
8.2.2.1 Design and Fabrication 235
8.2.2.2 Fabrication Results 241
8.2.2.3 DC Measurements: CNT Bump Resistance and Reworkability 243
8.2.2.4 RF Measurements: Discussion 245
8.2.2.5 Hybrid (EM/Analytical) Modelling 248
8.3 Conclusion and Future Work 250
References 251
9 Electrothermal Modeling of Carbon Nanotube-Based TSVs 255
9.1 Introduction 255
9.2 Temperature-Dependent Thermal Conductivity and Specific Heat of CNTs 257
9.3 Electrical Properties of CNT-TSVs 261
9.4 Electrothermal Modeling of a Pair of CNT-TSVs 267
9.5 Crosstalk Effects in CNT-TSVs 275
9.6 3-D Carbon-Based Heterogeneous Interconnects 278
9.7 Conclusion 286
References 287
10 Exploring Carbon Nanotubes for 3D Power Delivery Networks 290
10.1 Introduction 290
10.2 Modeling of CNTs 291
10.3 CNTs for 2D Power Delivery Network 294
10.3.1 Branch Analysis with CNTs 296
10.4 CNTs for 3D Power Delivery Network 300
10.4.1 TSV CNT Analysis 304
10.4.2 Voltage Drop Analysis on a 3D PDN 306
10.5 Thermal Modeling for CNTs 308
10.6 Conclusion 318
References 320
11 Carbon Nanotubes for Monolithic 3D ICs 322
11.1 Introduction to Monolithic 3D Integration 323
11.1.1 Challenges for Monolithic 3D ICs 324
11.1.2 Enabling Monolithic 3D: CNTs and Emerging Nanotechnologies 324
11.2 CNFETs for Monolithic 3D ICs 326
11.2.1 CNTs as a Digital Logic Technology 326
11.2.2 Overcoming CNT Obstacles 327
11.2.3 Fabricating Monolithic 3D CNFET ICs 330
11.3 Experimental Demonstrations 332
11.3.1 Monolithic 3D CNFET ICs 332
11.3.2 Hybrid CNFET-Silicon CMOS Monolithic 3D ICs 332
11.3.3 Monolithic 3D Integration: Logic+Memory 334
11.4 Outlook: Ongoing and Future Work 335
References 336

Erscheint lt. Verlag 9.7.2016
Zusatzinfo XII, 333 p. 167 illus., 133 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Technik Elektrotechnik / Energietechnik
Schlagworte 3D Integrated Circuits • Carbon Nanotubes • Carbon Nanotubes and Nanostructures • Graphene • Graphene Nanoribbon Interconnects • On-Chip Interconnect • TSVs for 3D Integrated Circuits
ISBN-10 3-319-29746-5 / 3319297465
ISBN-13 978-3-319-29746-0 / 9783319297460
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99