Uncertainty Decoding for Reverberation-Robust Automatic Speech Recognition

(Autor)

Buch
VIII, 191 Seiten
2016
Fau University Press (Verlag)
978-3-944057-61-3 (ISBN)

Lese- und Medienproben

Uncertainty Decoding for Reverberation-Robust Automatic Speech Recognition - Roland Maas
18,00 inkl. MwSt
The major problem in distant-talking speech recognition is the corruption of speech signals by both interfering sounds and reverberation. While a range of successful techniques has been developed since the beginnings of speech recognition research to combat additive and short convolutive noise, compensating for long-term distortion caused by reverberation has not gained wide attention until recently. This thesis further develops an uncertainty decoding approach, named REverberation MOdeling for Speech recognition (REMOS), to adapt the acoustic model of a conventional Hidden Markov Model-based recognizer to reverberant environments. By incorporating a convolutive observation model, the Viterbi decoder is extended in order to implicitly provide a state-wise late reverberation estimate leading to a relaxation of the hidden Markov models' conditional independence assumption. The experimental evaluation confirms that REMOS yields strong speech recognition performance under noisy and reverberant conditions and furthermore allows for a rapid adaptation to changing acoustic conditions.
Erscheinungsdatum
Reihe/Serie FAU Forschungen : Reihe B ; 8
Verlagsort Erlangen
Sprache englisch
Maße 170 x 240 mm
Gewicht 517 g
Einbandart gebunden
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Automatische Spracherkennung • Hidden-Markov-Modell • Nachhall
ISBN-10 3-944057-61-9 / 3944057619
ISBN-13 978-3-944057-61-3 / 9783944057613
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00