Surgical Tools and Medical Devices (eBook)
XX, 691 Seiten
Springer International Publishing (Verlag)
978-3-319-33489-9 (ISBN)
- Microvascular anastomoses
- Inhaler devices used for pulmonary delivery of medical aerosols
- Surface modification of interference screws
- Biomechanics of the mandible (a detailed case study)
- Safety and medical devices
- The synthesis of nanostructured material
- Delivery of anticancer molecules using carbon nanotubes
- Nano and micro coatings for medical devices
Professor Waqar Ahmed is Professor of Nanotechnology and Advanced Materials in the School of Electrical and Mechanical Engineering at the University of Ulster. He has published over 300 papers, and has authored or co-authored 6 book chapters.
Mark J. Jackson is the McCune and Middlekauff Foundation Endowed Faculty Fellow and Academic Department Head at Kansas State University. He has authored and coauthored over 250 publications in archived journals and refereed conference proceedings, and has written and edited books in the area of nanotechnology and manufacturing.
Professor Waqar Ahmed is Professor of Nanotechnology and Advanced Materials in the School of Electrical and Mechanical Engineering at the University of Ulster. He has published over 300 papers, and has authored or co-authored 6 book chapters. Mark J. Jackson is the McCune and Middlekauff Foundation Endowed Faculty Fellow and Academic Department Head at Kansas State University. He has authored and coauthored over 250 publications in archived journals and refereed conference proceedings, and has written and edited books in the area of nanotechnology and manufacturing.
Foreword by Sir Harold W. Kroto 5
Preface 7
Contents 9
Contributors 12
Nomenclature 16
1 Atomic Scale Machining of Medical Materials 19
Abstract 19
1.1 Introduction 20
1.2 Nanomachining 21
1.2.1 Cutting Force and Energy 21
1.2.2 Cutting Temperature 24
1.2.3 Chip Formation and Surface Generation 25
1.2.4 Minimum Undeformed Chip Thickness 27
1.2.5 Critical Cutting Edge Radius 28
1.2.6 Properties of Workpiece Materials 30
1.3 Material Requirements for the Medical IndustryTitanium (Ti) alloys 32
1.3.1 Properties of Titanium Alloys 33
1.3.2 Classification of Ti Alloys 34
1.3.3 Medical Applications of Ti Alloys 38
1.4 Material Models 38
1.4.1 Johnson–Cook Model (J–C) 39
1.4.2 Mechanical Threshold Model (MTS) 41
1.4.3 Power Law Model 41
1.4.4 Zerilli and Armstrong Model 41
1.4.5 Japanese Model 42
1.4.6 Bammann, Chiesa, and Johnson Model (BCJ) 43
1.4.7 The Applied Model 44
1.5 Machining of Titanium Alloys for Medical Applications 45
1.5.1 Micromachining Medical Materials 53
1.5.1.1 The Size Effect 54
1.5.1.2 Minimum Chip Thickness 59
1.5.1.3 Computational Analysis 62
1.6 Further Developments 68
Acknowledgements 68
References 68
2 Anodization: A Promising Nano Modification Technique of Titanium-Based Implants for Orthopedic Applications 73
Abstract 73
2.1 Introduction 73
2.2 Anodization of Titanium 74
2.2.1 Basics of Anodization Process 74
2.2.2 Influences of Processing Parameters 75
2.2.3 Creation of Rough Surfaces 76
2.2.4 Creation of Nano-roughness 78
2.2.5 Control of Chemical Composition 81
2.3 Structure and Properties of Anodized Oxide Film 86
2.3.1 Structure 86
2.3.2 Corrosion Resistance and Adhesive Strength 86
2.3.3 Biological Properties of Anodized Titanium 88
2.3.3.1 In Vitro Studies 88
2.3.3.2 Mechanisms of Increased Osteoblast Function 90
2.3.3.3 In Vivo Studies 91
2.4 Future Directions 94
Acknowledgments 94
References 95
3 Titanium Dioxide Coatings for Medical Devices 98
Abstract 98
3.1 Titanium Dioxide Coatings 98
3.2 Conclusions 107
References 108
4 Effects of Shape and Surface Modification on the Corrosion of Nitinol Alloy Wires Exposed to Saline Solutions 109
Abstract 109
4.1 Introduction 109
4.2 Experimental Methods 110
4.2.1 Electrochemical Testing Procedure 111
4.2.2 Experimental Results 111
4.3 Summary 118
Acknowledgments 119
References 119
5 Cardiovascular Interventional and Implantable Devices 120
Abstract 120
5.1 Introduction 120
5.2 Key Surface Properties for Cardiovascular Interventional Devices 122
5.3 Cardiovascular Implantable Devices 123
5.4 Electrical Implantable Devices 124
5.5 Mechanical Implantables 127
5.6 Important Surface Properties for Implantable Cardiovascular Devices 128
References 130
6 Surface Engineering of Artificial Heart Valves to Using Modified Diamond-Like Coatings 132
Abstract 132
6.1 Introduction 132
6.2 History of Mechanical Heart Valves 133
6.3 Thrombosis 138
6.4 Hemocompatibility 140
6.5 Endothelium and Endothelial Cell Seeding 142
6.6 Surface Engineering Artificial Heart Valves 144
6.6.1 Biological Properties of Diamond-Like Carbon 144
6.6.2 Other Biocompatible Coatings 145
6.6.3 Chromium Modified DLC 146
6.6.4 Silicon Modified DLC 150
6.7 Summary 157
References 159
7 Diamond Surgical Tools 163
Abstract 163
7.1 Introduction 163
7.2 Properties of Diamond 165
7.3 History of Diamond 165
7.3.1 Early History of Diamond Synthesis 165
7.3.2 Metastable Diamond Growth 168
7.4 CVD Diamond Technology 169
7.5 CVD Diamond Processes 170
7.5.1 Plasma-Enhanced CVD 170
7.5.2 Hot Filament CVD (HFCVD) 172
7.6 Treatment of Substrate 173
7.6.1 Selection of Substrate Material 173
7.6.2 Substrate Pretreatment 174
7.7 Modification of HFCVD Process 177
7.7.1 Modification of Filament Assembly 177
7.7.2 Process Conditions 178
7.8 Nucleation and Growth 179
7.8.1 Nucleation Stage 180
7.8.2 Bias-Enhanced Nucleation (BEN) 181
7.8.3 Influence of Temperature 183
7.9 Deposition on 3D Substrates 186
7.9.1 Diamond Deposition on Metallic (Molybdenum) Wire 186
7.9.2 Deposition on WC-Co Surgical Tool 187
7.9.3 Diamond Deposition on Tungsten Carbide (WC-Co) Surgical Tool 191
7.10 Wear of Diamond 193
7.10.1 Performance of Diamond-Coated Surgical Tool 195
7.10.2 Performance of Diamond-Coated Surgical Tool 195
7.11 Time-Modulated CVD Diamond 200
7.12 Conclusions 206
References 206
8 Dental Tool Technology 209
Abstract 209
8.1 Introduction 209
8.2 Burs and Abrasive Points 211
8.3 Classification of Dental Burs 213
8.4 Coding of Dental Tools 215
8.4.1 Shapes 215
8.4.2 Types of Toothing 216
8.4.3 Specific Characteristics of Diamond Instruments 217
8.5 Dental Devices 218
8.6 Dental Laboratory Materials 219
8.6.1 Gypsum 219
8.6.2 Light-Activated Dental Impression Tray Materials 220
8.6.3 Materials for Dentures 221
8.6.4 Metal Components: Crowns, Bridges and Metal Partial Dentures 222
8.6.5 Materials for Partial Denture Frameworks 223
8.6.6 Titanium Alloys 224
8.6.7 Materials for Metal Inlays, Crowns and Bridges 224
8.6.8 Ceramics 225
8.6.9 Machinable Ceramic Restorations 226
8.7 Dental Cutting Tools 227
8.7.1 Cutting Efficiency 227
8.7.2 CVD Dental Burs 228
8.7.3 Shanks 230
8.8 Health and Safety 231
8.8.1 Vibration 231
8.8.2 Dust 231
8.8.3 Particle Size 232
References 232
9 Nanocrystalline Diamond: Deposition Routes and Clinical Applications 239
Abstract 239
9.1 Introduction 239
9.2 Nanocrystalline Diamond 241
9.2.1 Deposition Routes 242
9.2.2 Time Modulated CVD 245
9.3 Clinical Applications 251
9.3.1 Heart Valves 251
9.3.2 Dental Burs 253
9.3.3 Hip Prostheses 255
9.3.4 Microfluidic Devices 256
9.3.5 Summary 256
References 258
10 Medical Device Manufacturing: Environment, Engineering Control and Monitoring 263
Abstract 263
10.1 Introduction 263
10.2 Stressor Source, Properties, and Characteristics 265
10.3 SterilizationSurface Sterilization 269
10.3.1 Ethylene Oxide Sterilization 270
10.3.2 Gamma Ray Sterilization 270
10.3.3 Electron Beam Radiation Sterilization 272
10.3.4 Other Sterilization Techniques 272
10.4 Cleaning, Etching, and Surface Preparation 273
10.4.1 Alcohols 273
10.4.2 Chlorinated and Fluorinated Hydrocarbons 275
10.4.3 Acids and Alkalis 276
10.4.4 Acetone 278
10.4.5 Particulate Matter 278
10.4.6 Spent Solvents 279
10.4.7 The Future of Surface Preparation Techniques 279
10.5 Adhesive Applications 281
10.6 Coating Applications 282
10.7 Drilling, Grinding, Cutting, and Machining 282
10.7.1 Laser Cutting 283
10.8 Welding and Soldering 284
10.9 General Maintenance Activities 285
10.10 Laboratory Research and Testing 285
10.11 Environmental and Engineering Controls 286
10.12 Substitution 287
10.13 Process Controls 287
10.14 Enclosure/Isolation 288
10.15 Process Change or Elimination 289
10.16 Ventilation Controls 289
10.16.1 Dilution Ventilation 289
10.16.2 Local Exhaust Ventilation (LEV) 290
10.17 Personal Protective Equipment and Clothing 294
10.18 Control Strategies in Device Manufacturing 295
10.19 Monitoring 296
10.20 Particle, Fumes, and Aerosol Monitoring 297
10.21 Vapors and Gases 302
10.21.1 Detector (Colorimetric) Tubes 303
10.21.2 Photoionization Detectors (PIDs) 305
10.21.3 Flame Ionization Detectors (FIDs) 305
10.21.4 Electrochemical Sensor Monitors 306
10.21.5 Infrared Spectrophotometers 306
10.21.6 Gas Chromatographs (GCs) 306
10.21.7 X-ray Fluorescence (XRFs) 307
10.22 Ionizing Radiation 307
10.23 Nonionizing Radiation 308
10.24 Noise and Heat Stress 308
10.25 Microbial Environmental Monitoring 309
10.26 Clean Room Monitoring Requirements 312
10.27 Monitor Selection in Device Manufacturing 313
10.28 Summary 314
Acknowledgments 314
References 315
11 Biomaterial–Cell Tissue Interactions in Surface Engineered Carbon-Based Biomedical Implants and Devices 317
Abstract 317
11.1 Introduction to Surface Engineered Carbon-Based Materials 317
11.2 Potential Biomedical Applications of DLC 322
11.3 Definitions and General Aspects of Biocompatibility 323
11.3.1 Specie Differences 324
11.3.2 Cell Specificity 324
11.4 Blood 324
11.4.1 Definitions and General Aspects of Hemocompatibility 325
11.4.2 General Hypothesis 326
11.4.3 Material 326
11.4.4 Material and Hemodynamics 327
11.4.5 Hemodynamics 327
11.4.6 Erythrocytes and Leucocytes 327
11.4.7 Blood Cells and Protein Surface Tensions 327
11.4.8 Heparinised Surfaces and Drugs 328
11.4.9 Calcification 328
11.4.10 Surface Charges 328
11.5 Cell Culture/Seeding Peculiar to Each Cell 329
11.5.1 Human Microvascular Endothelial Cells (HMEC-1) 329
11.5.2 Human Platelets 330
11.5.3 Pericytes Cell Line 330
11.5.4 Human Embryonic Lung, L132 Cell Lines 331
11.5.5 V79 Cell Lines 331
11.6 Statistics and Counting of Cells 332
11.6.1 Cell Fixation and Drying 332
11.6.2 Gold–Platinum Coating for Charging Compensation 332
11.6.3 SEM Imaging of Cells 332
11.7 Stereological Investigations 332
11.7.1 Stereological Investigation and Statistical Analysis (Endothelial and Other Cells) 332
11.7.2 Stereological Investigations and Statistical Analysis (Platelets) 333
11.8 Photo-Fluorescent Imaging of Cells/Tissues 334
11.8.1 Typical Sample Preparation for Photo-Fluorescent Microscopy 334
11.9 Biocompatibility and Hemocompatibility Models 335
11.9.1 Proteins-Adhesive and Non-adhesive Proteins 335
11.9.2 Surface Energy Model 336
11.9.3 Band Gap Model 337
11.9.4 Surface Topography, Roughness and Patterning 337
11.9.5 Endothelial-Platelet Model 338
11.10 Carbon-Based Materials Interaction with Selected Proteins and Cells 339
11.11 DLC Interactions with Fibroblasts In Vitro 339
11.11.1 Human Fibroblasts 339
11.11.2 DLC Interaction with Osteoblasts In Vitro 340
11.11.3 DLC Interaction Kidney Cells In Vitro 341
11.11.4 Mutagenicity Evaluation of DLC 342
11.11.5 DLC Interaction with Specific Cells (Hemocompatibility) 342
11.11.6 DLC Interaction with Endothelial Cells 342
11.11.7 Nitrogen-Doped DLC Interaction with Endothelial Cells 344
11.11.8 DLC Interaction with Platelets 350
11.11.9 DLC Interaction with Blood Cells not Involved in the Clotting Process 357
11.11.10 DLC Interaction with Erythrocytes (Red Blood Cells, RBC) 358
11.11.11 DLC Interaction with Human Haematopoietic Myeloblasts In Vitro 358
11.11.12 DLC Interactions with Granulocytes (Neutrophils or Basophils or Eosinophils) In Vitro 359
11.11.13 DLC Interaction with Monocytes (Macrophages) In Vitro 360
11.11.14 DLC Interaction with Lymphocytes 361
11.12 Endothelial Preseeding on Biomaterials for Tissue Engineering 363
11.12.1 Endothelial Cell–Platelet Interactions on a-C:H and a-C:H:Si Thin Films 364
11.13 Bioassays and Assessment of Intracellular Activities 368
11.13.1 MTT Assay 369
11.13.1.1 The Interaction of a-C:H and a-C:H:Si Thin Films with Bovine Retinal Pericytes 369
11.13.1.2 The Interaction of a-C:H and a-C:H:Si Thin Films with L132 Cell Line 371
11.13.1.3 The Interaction of a-C:H and a-C:H:Si Thin Films with V79 Cell Line 375
11.13.2 Other Bioassays Techniques 376
11.14 In Vivo Studies of Carbon-Based Materials: Cell–Tissue Interactions In Situ 377
11.14.1 In Vivo Studies on the Biocompatibility and Hemocompatibility of DLC 377
11.14.2 Summary 379
11.15 Ongoing and Future Investigations 384
References 386
12 Applications of Carbon Nanotubes in Bio-Nanotechnology 393
Abstract 393
12.1 Introduction 393
12.2 Bio-Nanomaterials 394
12.3 Carbon NanotubesApplications of Carbon Nanotubes 395
12.3.1 Introduction 395
12.3.2 Synthesis 395
12.3.3 Structure and Properties 397
12.3.4 Applications 398
12.3.4.1 CNTs as Biosensors 399
12.3.4.2 Processibility 402
12.3.4.3 Fabrication 404
12.3.4.4 Carbon Nanotubes for Neuronal Growth 406
12.3.4.5 Drug Delivery by CNTs 407
12.3.4.6 Biomedical Implant Applications of CNT 409
12.4 Analysis 412
12.5 Toxicity of Carbon Nanotubes 416
12.6 Conclusions 416
References 416
13 Bonelike® Graft for Regenerative Bone Applications 423
Abstract 423
13.1 Introduction 423
13.1.1 Bone Physiology 423
13.1.2 Regenerative Graft Procedures 427
13.2 Synthetic Bone Graft Material—Bonelike® 430
13.2.1 Bonelike® Development and Preparation 430
13.2.2 Physico-Chemical Characterisation 431
13.2.3 Mechanical Characterisation 433
13.2.4 Biological Evaluation 436
13.2.4.1 In Vitro Studies 436
13.2.4.2 In Vivo Experimentation 439
13.2.5 Medical Applications 445
13.2.5.1 Oral and Maxillofacial Surgery 445
13.2.5.2 Orthopaedics 446
13.3 Summary 447
References 448
14 Machining Cancellous Bone Prior to Prosthetic Implantation 452
Abstract 452
14.1 Introduction 452
14.2 Analysis of Fluid Flow 453
14.2.1 Assumptions 453
14.2.2 CFD Geometry Model 453
14.2.3 Fluid Model 454
14.3 Experimental Results and Discussion 456
14.3.1 Numerical Resultsanalysis of fluid flow 456
14.3.2 Flow Topology and Pressure Variations 460
14.3.2.1 Rotor with 90° Blade Angle 460
14.3.2.2 Rotor with Three Inlets Inclined at 45° 462
14.3.2.3 Two-Stage Rotor 463
14.3.3 Mach Number 465
14.4 Machining of Bone 470
14.5 Structure of Cancellous Bone 472
14.6 Theory of Micromachining 473
14.7 Initial Chip Curl Modeling 476
14.8 Experimental 481
14.8.1 Micromachining Apparatus 481
14.8.2 Observations of Bone Chips 482
14.8.3 Biomachining Results 485
14.9 Discussion 485
14.10 Conclusions 486
Acknowledgments 486
References 487
15 Titanium and Titanium Alloy Applications in Medicine 488
Abstract 488
15.1 Metallurgical Aspects 488
15.1.1 Introduction 488
15.1.2 Basic Aspects of Titanium Metallurgy 489
15.1.3 Mechanical Behavior 492
15.1.4 Corrosion Behavior 495
15.2 Principal Requirements of Medical Implants 497
15.2.1 Introduction 497
15.2.2 Metallic Biomaterials 498
15.2.3 The Surface-Tissue Interaction 498
15.2.4 Machining of Titanium Alloys 499
15.2.5 Surface Treatments and Coatings 508
15.2.6 Applications in Practice 510
15.3 Shape Memory Alloys 513
15.3.1 IntroductionShape Memory Alloys (SMA) 513
15.3.1.1 Thermomechanical Behavior 514
15.3.2 Biocompatibility 516
15.3.2.1 Corrosion Behavior 518
15.3.3 Surface of Implant 519
15.3.3.1 Surface Improvements 519
15.3.4 Medical Applications 520
15.4 Conclusions 523
Acknowledgments 524
References 524
16 Nanocoatings for Medical Devices 531
Abstract 531
16.1 What Is a Medical Device? 531
16.2 CoatingNanocoatings for Medical Devices 532
16.3 Nanocoating of Medical Devices 533
16.3.1 Dental Applications 533
16.3.2 Applications in Implants 541
16.3.3 Progression in Stents 547
16.3.4 Miscellaneous 549
16.4 Conclusions 551
References 551
17 Microvascular Anastomoses: Suture and Non-suture Methods 556
Abstract 556
17.1 Microvascular Anastomoses 556
17.2 Background of Microvascular Anastomoses 557
17.3 Sutured Anastomoses 558
17.3.1 Suture Properties 558
17.3.2 Suture Techniques 558
17.4 Non-suture Anastomoses 559
17.4.1 Clips/Staples 559
17.4.2 Adhesives 560
17.4.3 Laser-Assisted Microvascular Anastomosis (LAMA) 561
17.4.4 Stents 561
17.4.5 Magnets 562
17.4.6 Gels 564
17.4.7 Bioabsorbable Pin Device 565
17.4.8 Ring-Pin Devices 566
17.5 Summary 569
References 569
18 Delivery of Anticancer Molecules Using Carbon Nanotubes 574
Abstract 574
18.1 Introduction 574
18.2 Functionalisation of Carbon Nanotubes 576
18.3 Rationale Behind Using Carbon Nanotubes in Delivery of Anticancer Drugs 577
18.4 Mechanism of Cellular Uptake of Carbon Nanotubes 577
18.5 Use of Folate Derivatives and Other Targeting Moieties 580
18.6 Pegylated Taxol Carbon Nanotube Formulations 581
References 582
19 Design Characteristics of Inhaler Devices Used for Pulmonary Delivery of Medical Aerosols 584
Abstract 584
19.1 Introduction 584
19.2 Types of Devices 585
19.2.1 Pressurized Metered Dose Inhalers (PMDIs) 585
19.2.2 Dry Powder Inhalers (DPIs) 586
19.2.3 Nebulizers 588
19.2.3.1 Air-Jet Nebulizer 589
19.2.3.2 Ultrasonic Nebulizers 591
19.2.3.3 Vibrating-Mesh Nebulizers 596
19.3 Conclusions 598
References 598
20 Surface Modification of Interference Screws Used in Anterior Cruciate Ligament Reconstruction Surgery 603
Abstract 603
20.1 Poor Graft-Bone Integration 608
References 616
21 Biomechanics of the Mandible and Current Evidence Base for Treatment of the Fractured Mandible 626
Abstract 626
21.1 Structure of the Mandible 626
21.2 Biomechanics and Anatomical Considerations of the Bony Mandible 629
21.3 Mono-Cortical Fixation 630
21.3.1 Rationale for Fixation 632
21.3.2 How the Fracture Heals 634
21.4 Case History 635
21.4.1 Diagnoses 636
21.4.2 Treatment 636
21.4.3 Treatment Plan 637
21.4.4 Surgery 637
21.4.5 Post-Operative Plan 638
21.4.6 Review Appointments 638
21.5 Discussion 638
21.6 Final Word from the Expert 640
References 640
22 Safety and Medical Devices: The Human Factors Perspective 643
Abstract 643
22.1 Safety in Healthcare 643
22.1.1 Human Factors 646
22.2 Man–Device Interface 647
22.3 Design 648
22.4 Transfer to Practice 648
22.5 State of the Field 649
22.5.1 Cognitive Load Theory 649
22.5.2 Audio to Reduce Visual Distraction 650
22.5.3 Tactile Language Communication 650
22.5.4 Generic Non-technical Skills Training 650
22.6 Summary 652
References 652
23 Synthesis of Nanostructured Material and Its Applications as Surgical Tools and Devices for Monitoring Cellular Activities 655
Abstract 655
23.1 Nanotechnology and Its Applications 656
23.2 Desired Parameters for the Fabrication of Nanodevices for Detecting Abnormal Cellular Activities 662
23.3 The Chemical Concept of Functional Metal Oxide Nanoparticles 662
23.4 Synthesis of Theranostic Nanoparticles 663
23.5 State of the Art 665
23.6 Fabrication of Functional Metal Oxide Nanopowder Depends on Following Points for Improving Process Efficiency 667
23.7 Synthesis of Biocompatible Metal Oxide Nanopowder 667
23.8 Characterization Techniques [33–49] 672
23.9 Use of Functionalized Nanoparticles 673
23.10 Magnetic Resonance Imaging 676
23.11 Nanoprobes/Chips Array Technology 676
23.12 Nanoparticles Use as Therapeutic Medicines 677
23.13 Use of Cancer Drug Based as Nanocarrier 677
23.14 Use of Nanoparticles for Vaccines/Gene Delivery 678
23.15 Metallic Nanoparticles Without Any Protective Layer 678
23.16 Nano-Surgery 679
23.17 Use of Nanoparticles in Regenerative Medicines 679
23.18 Nanoparticles for Orthopedic Applications 679
23.19 Renal Clearance 679
23.20 Conclusions 680
References 681
24 Correction to: Applications of Carbon Nanotubes in Bio-Nanotechnology 685
Correction to: Chapter 12 in: W. Ahmed and M.J. Jackson (eds.), Surgical Tools and Medical Devices, https://doi.org/10.1007/978-3-319-33489-9_12 685
Editors’ Vitae 686
Index 691
Erscheint lt. Verlag | 21.5.2016 |
---|---|
Zusatzinfo | XX, 691 p. 381 illus., 161 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Technik ► Bauwesen |
Technik ► Maschinenbau | |
Schlagworte | Bone applications • Cardiovascular engineering • Computational modeling • Corrosion of implants • Dental Tools • Graphene-Based Materials • implantable devices • Medical Device Manufacturing • prosthetics • Tissue engineering |
ISBN-10 | 3-319-33489-1 / 3319334891 |
ISBN-13 | 978-3-319-33489-9 / 9783319334899 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich