Lasso-MPC – Predictive Control with ℓ1-Regularised Least Squares (eBook)
XXX, 187 Seiten
Springer International Publishing (Verlag)
978-3-319-27963-3 (ISBN)
Marco Gallieri received a PhD in Engineering as an EPSRC scholar from Sidney Sussex College, the University of Cambridge, in 2014. His research was on Model Predictive Control for redundantly actuated systems, with focus on marine and air vehicles. In 2007 he received a BSc and in 2009 an MSc in information and industrial automation engineering from the Universita' Politecnica delle Marche, in Italy. He wrote his MSc thesis in 2009 during an Erasmus exchange at the National University of Ireland Maynooth in collaboration with BioAtlantis Ltd and Enterprise Ireland. The topic was modeling and control design for a crane-vessel for seaweed harvesting. Between May and September 2010 he was a Marie Curie early state researcher at the Instituto Superior Tecnico in Lisbon, working on non-linear methods for formation control of autonomous underwater vehicles with range only measurements. He is author of ten international conference papers as well as a Journal article.
Since February 2014 he is with McLaren Racing Ltd. From July 2015 he is involved in the development of the F1 car simulator. Previously he worked as a control systems engineer and developed a model based Li-Ion battery management system for the 2015 Honda power unit. Further relevant projects included car speed and attitude estimation via sensor fusion, predictive analytics for fuel sensor management and fuel system design optimization.
Marco Gallieri received a PhD in Engineering as an EPSRC scholar from Sidney Sussex College, the University of Cambridge, in 2014. His research was on Model Predictive Control for redundantly actuated systems, with focus on marine and air vehicles. In 2007 he received a BSc and in 2009 an MSc in information and industrial automation engineering from the Universita’ Politecnica delle Marche, in Italy. He wrote his MSc thesis in 2009 during an Erasmus exchange at the National University of Ireland Maynooth in collaboration with BioAtlantis Ltd and Enterprise Ireland. The topic was modeling and control design for a crane-vessel for seaweed harvesting. Between May and September 2010 he was a Marie Curie early state researcher at the Instituto Superior Tecnico in Lisbon, working on non-linear methods for formation control of autonomous underwater vehicles with range only measurements. He is author of ten international conference papers as well as a Journal article. Since February 2014 he is with McLaren Racing Ltd. From July 2015 he is involved in the development of the F1 car simulator. Previously he worked as a control systems engineer and developed a model based Li-Ion battery management system for the 2015 Honda power unit. Further relevant projects included car speed and attitude estimation via sensor fusion, predictive analytics for fuel sensor management and fuel system design optimization.
Introduction.- Background.- Principles of LASSO MPC.- Version 1: `1-Input Regularised Quadratic MPC.- Version 2: LASSO MPC with stabilising terminal cost.- Design of LASSO MPC for prioritised and auxiliary actuators.- Robust Tracking with Soft-constraints.- Ship roll reduction with rudder and fins.- Concluding Remarks.
Erscheint lt. Verlag | 31.3.2016 |
---|---|
Reihe/Serie | Springer Theses | Springer Theses |
Zusatzinfo | XXX, 187 p. 64 illus., 54 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Asychronous actuator interventions • ℓ1-regularised least squares loss function MPC • LASSO cost function • LASSO Model Predictive Control • Least Absolute Shrinkage and Selection • Model Predictive Control • MPC • Novel MPC Strategy • Operator • Sparse actuation Model Predictive Control • standard control techniques |
ISBN-10 | 3-319-27963-7 / 3319279637 |
ISBN-13 | 978-3-319-27963-3 / 9783319279633 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich