Alternative Energy Sources and Technologies (eBook)

Process Design and Operation

Mariano Martín (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2016
XI, 512 Seiten
Springer International Publishing (Verlag)
978-3-319-28752-2 (ISBN)

Lese- und Medienproben

Alternative Energy Sources and Technologies -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Presenting a comprehensive analysis of the use of alternative sources of energy and technologies to produce fuels and power, this book describes the energy value chain from harvesting the raw material, (i.e solar, wind, biomass or shale gas) followed by analysis of the processing steps into power, fuels and/or chemicals and finally the distribution of the products.

Featuring an examination of the techno-economic processes and integration opportunities which can add value to by-products or promote the use of different sources of energy within the same facility, this book looks at the tools that can make this integration possible as well as utilising a real world case study. The case study of the operation of 'El hierro' island is used as an example of the current effort towards more efficient use of the resources available. 

Tackling head on the open challenges of the supply, the variability of the source and its prediction, the description of novel processes that are being developed and evaluated for their transformation as well as how we can distribute them to the consumer and how we can integrate the new chemicals, fuels and power within the current system and infrastructure, the book takes a process based perspective with such an approach able to help us in the use and integration of these sources of energy and novel technologies.


Mariano Martín is an Assistant professor of Chemical Engineering at the University of Salamanca and is Erasmus Visiting Professor at the University of Leeds (March 2014).
He was a Fulbright Postdoctoral Research fellow at CMU, advised by Prof. Ignacio E. Grossmann 2009-2011, a postdoctoral engineer at Procter and Gamble, Newcastle Technical Centre, 2008-2009, and obtained his PhD in Chemical Engineering in 2008 from the University of Salamanca.
Mariano Martín has published over 49 journal papers and is author of over 13 book chapters as well as leading 49 conference presentations throughout his career.
Awarded the Fulbright postdoctoral research fellowship 2009-2011 he is also a Senior Member of the American Institute Chemical Engineers professional society since 2013.

Mariano Martín is an Assistant professor of Chemical Engineering at the University of Salamanca and is Erasmus Visiting Professor at the University of Leeds (March 2014). He was a Fulbright Postdoctoral Research fellow at CMU, advised by Prof. Ignacio E. Grossmann 2009-2011, a postdoctoral engineer at Procter and Gamble, Newcastle Technical Centre, 2008-2009, and obtained his PhD in Chemical Engineering in 2008 from the University of Salamanca. Mariano Martín has published over 49 journal papers and is author of over 13 book chapters as well as leading 49 conference presentations throughout his career. Awarded the Fulbright postdoctoral research fellowship 2009-2011 he is also a Senior Member of the American Institute Chemical Engineers professional society since 2013.

Prologue 5
Contents 6
Contributors 8
Part IAlternative Energy Sources 11
1 Nonconventional Fossil Energy Sources: Shale Gas and Methane Hydrates 12
Abstract 12
1 Introduction 12
2 Shale Gas 13
2.1 Gas Extraction 14
2.2 Composition 16
2.3 Shale Gas Production Cost 17
3 Methane Hydrates 18
3.1 Availability of Methane Hydrates 18
3.2 Methane Hydrates Extraction 18
3.3 Production Cost of Natural Gas from Hydrates 21
4 Natural Gas Market. Effect of Unconventional Gas 21
References 23
2 Renewable Energy Sector 26
1 Introduction 26
2 Solar Thermal Energy 27
2.1 Low and Medium/High Solar Thermal Energy 27
2.1.1 Low Temperature Systems 27
Flat Plate Collector 27
2.1.2 Medium/High Temperature Systems 28
Vacuum Tube Collector 28
Cylindrical-Parabolic Collector 28
2.2 High Temperature Solar Energy. Solar Thermal Power Plants 29
2.3 Other Solar Thermal Technologies 30
3 Photovoltaic Solar Energy 31
4 Biomass 33
4.1 The Use of Biomass 33
4.2 Biogas 34
4.2.1 Biogas from Agricultural Holding 35
4.2.2 Biogas from Wastes 36
5 Wind Energy 36
Part II Infrastructure Design for Various Energy Sources 40
3 Development Planning of Offshore Oilfield Infrastructure 41
Abstract 41
1 Introduction 42
2 Literature Review 43
2.1 Deterministic Approaches for Oil/Gas Field Development Planning 43
2.2 Incorporating Complex Fiscal Rules 45
2.3 Incorporating Uncertainties in the Development Planning 46
3 Background 49
4 Problem Description 53
5 Basic Deterministic Model 59
6 Incorporating Fiscal Contracts in Oilfield Planning 66
7 Incorporating Endogenous Uncertainty in Oilfield Development Planning 68
7.1 Multistage Stochastic Formulation 68
7.2 Standard Lagrangian Decomposition Approach 71
7.2.1 Limitations 73
7.3 Proposed Lagrangian Decomposition Approach 74
8 Examples 79
8.1 Instance 1: Deterministic Case 80
8.2 Instance 2: Development Planning with Complex Fiscal Rules 84
8.3 Instance 3: Stochastic Case 88
9 Conclusions 92
Acknowledgments 92
References 92
4 Emerging Optimal Control Models and Solvers for Interconnected Natural Gas and Electricity Networks 96
Abstract 96
1 Motivation 96
2 Optimal Control Formulations 99
2.1 Transport Equations 99
2.2 Constraints 101
2.3 Initial State 101
2.4 Objective Function 102
2.5 Integrated Gas–Electric Formulations 103
2.6 Stochastic Formulations 107
3 Economic and Resiliency Issues 107
4 Computational Issues 114
4.1 Emerging Model Structures 114
4.2 Dealing with Negative Curvature 117
4.3 Open Issues 118
5 Conclusions 120
Acknowledgments 121
References 121
Part III Processing of Alternatives Raw Materials 123
5 Equation-Based Design, Integration, and Optimization of Oxycombustion Power Systems 124
Abstract 124
1 Introduction 125
1.1 Process Overview 125
1.1.1 Air Separation 128
1.1.2 Furnace 129
1.1.3 Power Island 131
1.1.4 Pollution Controls and Flue Gas Recycle Strategies 132
1.1.5 CO2 Processing (Polishing) Unit 133
1.2 Key Design Decisions and Assumptions 134
1.3 Review of Systems Engineering Literature 135
2 Proposed Equation-Based Optimization Methodology 136
3 Air Separation Unit Optimization Case Study 139
4 CO2 Processing Unit Optimization Case Study 142
5 Steam Cycle Optimization 146
5.1 Hybrid 1D/3D Boiler Model 147
5.2 Trust Region Optimization Algorithm 148
5.3 Case Study 150
6 Conclusions and Outlook 154
Acknowledgements 156
References 156
6 Wind Energy 164
Abstract 164
1 Introduction 164
2 Wind Energy 166
2.1 Wind Resources 166
2.2 Wind Power Technology 169
2.3 Wind Power and Electricity System Integration 170
2.3.1 Wind Plant Power Generation 171
2.3.2 Grid Integration of Wind Power 173
3 Electrolytic Production of Hydrogen from Wind Energy 177
4 Wind for the Production of Hydrogen-Bearing Fuels 178
5 Conclusions 180
References 181
7 Solar Energy as Source for Power and Chemicals 186
Abstract 186
1 Introduction: Solar Energy 186
2 Types of Solar Capturing Technologies 190
2.1 PV Solar 190
2.1.1 Solar Gathering 190
2.1.2 Power Production 192
2.2 Solar Thermal 193
2.2.1 Solar Gathering 193
2.2.2 Heat Production 194
2.3 Solar Thermoelectric or Concentrated Solar Power (CSP) 195
2.3.1 Solar Gathering 195
2.3.2 Thermal Energy Storage Energy (TES) 199
2.3.3 Power Production 201
3 Chemicals and Power Production Process Evaluation 202
3.1 CSP Power 202
3.2 Production of Methane, Methanol 204
3.3 Solar Augmented Processes 206
References 208
8 Biomass as Source for Chemicals, Power, and Fuels 212
Abstract 212
1 Introduction and Method 212
2 Individual Processes 213
2.1 Grain Based 213
2.2 Oil Based 215
2.3 Lignocellulosic Biomass 217
2.3.1 The Biomass 217
2.3.2 The Pretreatment 218
2.3.3 Sugar-Based Products 220
2.3.4 Syngas-Based Products 223
2.4 Algae 225
2.5 Wastes: Biogas 227
3 Integrated Processes 227
3.1 First and Second Generation Bioethanol 227
3.2 Algae-Based Fuels 228
3.2.1 Ethanol and Biodiesel 229
3.2.2 Use of Glycerol 229
3.3 Multiproduct Processes from Lignocellulosic Biomass 231
3.4 Integrated Solar, Wind, and Biomass 233
4 Conclusions 235
References 235
9 CO2 Carbon Capture, Storage, and Uses 239
Abstract 239
1 CO2 Properties and Associated Uses 239
1.1 Thermodynamic Properties of CO2 240
1.2 Solubility in Liquids and Lean Acid Properties of CO2 245
1.3 Chemical Properties and Associated Uses of CO2 246
1.4 CO2 Oxidant Properties 248
1.5 Use of CO2 for Enhanced Oil Recovery (E.O.R.) 252
2 CO2 Capture 253
2.1 Introduction 253
2.2 CO2 Capture Technologies 254
2.3 Postcombustion Capture 257
2.4 Precombustion Capture 259
2.5 Oxy-Combustion 259
3 CO2 Transportation 263
4 CO2 Storage 263
4.1 Introduction 263
4.2 Trapping Mechanism 265
4.3 Capacity Estimation for CO2 Storage 266
4.4 Effects of Impurities 266
4.5 Monitoring 268
References 268
10 Optimal Design of Macroscopic Water and Energy Networks 270
Abstract 270
1 Introduction 274
2 Model Design 275
2.1 Equations for Existing Power Plants and New Power-Desalination Plants 275
2.2 Water Balances in Natural Resources 278
2.3 Water Balance in Distribution Stations 279
2.4 Pumping Cost 280
2.5 Piping Costs 281
2.6 Water Demands and Energy Demands 284
2.7 Equations for Storage Tanks 285
2.8 Objective Function 286
3 Case Study 287
3.1 Domestic Users 287
3.2 Agricultural Users 289
3.3 Industrial Users 290
3.4 Surface Water 290
3.5 Aquifers 291
3.6 Existing Power Plants and New Power-Desalination Plants 292
4 Optimization Results 293
5 Concluding Remarks 294
References 295
Part IVOperations 297
11 Retrofit of Total Site Heat Exchanger Networks by Mathematical Programming Approach 298
Abstract 298
1 Introduction 299
2 Total Site Integration 301
3 Approaches for Total Site Integration 304
3.1 Pinch Technology 304
3.2 Mathematical Programming 306
3.3 Hybrid Approaches Combining Pinch Analysis and Mathematical Programming 310
4 Software Tools for Total Site Integration 312
5 Retrofitting of Existing Heat Exchanger Networks Within Total Site 315
5.1 Extraction of Data 317
5.2 Targeting and Identification of Potential for Heat and Total Site Integration 319
5.3 Identification and Selection of Modifications 320
5.4 Verification of Modifications 321
5.5 Synthesis of the Final Heat Exchanger Network 322
6 Illustrative Examples 322
6.1 Retrofit of a Small-Scale Total Site 322
6.2 Retrofit of an Existing Refinery Total Site 325
7 Concluding Remarks 330
8 Sources of Further Information 330
Acknowledgments 332
Chap11 333
References 335
12 Improving Energy Efficiency in Batch Plants Through Direct Heat Integration 342
Abstract 342
1 Introduction 342
2 Problem Definition 346
3 Heat Integration Model 347
3.1 Constraints Featuring Binary Variables 348
3.2 Linear Constraints 350
4 Scheduling Model 352
5 Linking the Two Models 353
6 Multi-objective Optimization 354
6.1 Computational Environment 356
7 Choosing the Number of Temperature-Changing Stages 356
8 Makespan Versus Utility Consumption 358
8.1 Influence on Optimal Schedule and Heat Exchanger Network 359
9 Conclusions 361
Acknowledgments 362
References 362
13 Life Cycle Algal Biorefinery Design 364
Abstract 364
1 Introduction 364
2 A Framework for Sustainable Process Design and Synthesis 365
2.1 Life Cycle Analysis 365
2.2 Life Cycle Optimization 366
3 Process Design and Synthesis of Algal Biorefineries 368
4 Superstructure of an Algal Biorefinery 370
4.1 The Role of Superstructure Optimization 370
4.2 Technology Alternatives of an Algal Biorefinery 371
5 Cultivation 371
6 Harvesting 372
7 Lipid Extraction 373
8 Remnant Treatment 374
9 Biogas Utilization 374
10 Biofuel Production 375
11 Life Cycle Design of an Algal Biorefinery 376
12 Future Directions 377
12.1 Modeling Details 377
12.2 Life Cycle Considerations 378
13 Conclusions 378
Acknowledgement 378
References 379
14 Planning and Scheduling for Industrial Demand Side Management: Advances and Challenges 383
Abstract 383
1 Introduction 383
2 Definition of Demand Side Management 386
3 Characteristics of Industrial DSM 388
4 Optimization of Planning and Scheduling for Industrial DSM 389
4.1 Modeling Operational Flexibility 391
4.2 Integration of Production and Energy Management 398
4.3 Decision-Making Across Multiple Time Scales 400
4.4 Optimization Under Uncertainty 401
5 Case Studies 405
5.1 Scheduling of Process Networks with Various Power Contracts 405
5.2 Risk-Based Integrated Production Scheduling and Electricity Procurement 407
6 Future Developments and Challenges 409
7 Concluding Remarks 410
Acknowledgments 410
References 410
15 Industrial Tools and Needs 415
Abstract 415
1 Background 415
2 Industrial Processes 417
3 Value of a Better Energy Optimization 419
3.1 Energy Optimization 420
4 Industrial Tools and Solutions 423
4.1 Measurement and Metering 423
4.2 Monitoring and Visualization 423
4.3 Analysis and Reporting 424
4.4 Forecasting and Optimization 425
5 Systematical View of Putting All Together 426
6 Industrial Case Studies 428
6.1 Integration of Chemicals Production—BASF’s “Verbund” Concept 428
6.2 Stainless-Steel Batch Production 429
6.3 Pulp and Paper Production 433
6.4 Other Industrial Success Stories 435
7 Concluding Thoughts 436
References 437
16 Renewable-Based Self-sustainable Operation of Isolated Islands 439
Abstract 439
1 Background 439
2 Island Description 441
3 Electricity Sector 443
3.1 The Electric System of El Hierro 445
4 Historical Approach of the Self-sustainable System in El Hierro 446
4.1 European Context 447
5 Wind-Pumped Hydro Power Plant in El Hierro 448
6 The Technical Idea 450
6.1 The Decision-Making Process 450
6.2 The Components of the System 455
6.2.1 Wind Plant: 11.5 MW Power Plant (Fig. 9) 455
6.2.2 Water Storage System/Lower Deposit 456
6.2.3 Water Storage System/Pumping Station (6 MW) 457
6.2.4 Water Storage System/Upper Deposit 457
6.2.5 Hydraulic Turbine Station 458
6.2.6 Electrical Substation 458
6.3 Civil Works and Other Concerns in the Power Plant 459
6.4 Renewable Penetration and Generation Unit Price 459
7 Benefits and Further Initiatives 461
8 Conclusions 461
References 462
Part VEnergy Distribution 463
17 Multi-objective Optimisation Incorporating Life Cycle Assessment. A Case Study of Biofuels Supply Chain Design 464
Abstract 464
1 Introduction 464
1.1 Development of Supply Chain Optimisation 465
1.2 Green Supply Chain Optimisation 467
1.2.1 Incorporation of Life Cycle Assessment (LCA) 468
1.2.2 Biofuel Green Supply Chains 470
2 Problem Statement 471
2.1 Mathematical Formulation 473
2.2 Estimation of Economic and Environmental Objectives 476
2.3 Solution Method 479
3 Case Study 480
4 Conclusions 488
References 489
18 Large-Scale Stochastic Mixed-Integer Programming Algorithms for Power Generation Scheduling 492
Abstract 492
1 Stochastic Unit Commitment Model 492
1.1 Logical Constraints for Commitment, Startup, and Shutdown Decisions 493
1.2 Generation Limits, Spinning Reserve Requirements, and Ramping Constraints 494
1.3 Flow Balance and Transmission Line Capacity Constraints 495
1.4 Piecewise Linear Objective Function 495
1.5 Stochastic Mixed-Integer Programming Formulation 496
1.6 Technical Challenges of SMIP 496
2 Scenario Decomposition 497
2.1 Dual Decomposition 497
2.1.1 Subgradient Method 498
2.1.2 Cutting-Plane Method 499
2.1.3 Variants of the Cutting-Plane Method 500
Interior-Point Cutting-Plane Method 500
Bundle Method 502
2.2 Progressive Hedging 503
2.3 Incorporating Benders-Type Cutting-Plane Procedure 504
2.3.1 Feasibility Cuts 504
2.3.2 Optimality Cuts 505
3 Numerical Example 506
3.1 Lower and Upper Bounds from Dual Decomposition 507
3.2 Upper Bounds from Progressive Hedging 509
4 Summary 510
Acknowledgments 510
References 510

Erscheint lt. Verlag 22.3.2016
Zusatzinfo XI, 512 p. 205 illus., 151 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Wirtschaft
Schlagworte Energy Integration • Energy Process Design • Energy Value Chain • fuels • Renewable Energy Resources
ISBN-10 3-319-28752-4 / 3319287524
ISBN-13 978-3-319-28752-2 / 9783319287522
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99