Electrochemistry in Ionic Liquids (eBook)

Volume 2: Applications

Angel A. J. Torriero (Herausgeber)

eBook Download: PDF
2015 | 1st ed. 2015
XVII, 275 Seiten
Springer International Publishing (Verlag)
978-3-319-15132-8 (ISBN)

Lese- und Medienproben

Electrochemistry in Ionic Liquids -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is a set of two books dedicated to presenting the latest novel and advanced research from around the world in this exciting area. These books highlight the important properties of electrochemistry in ionic liquids - as opposed to the more commonly used aqueous and organic environments - and the many applications. Readers will find 20 chapters gathered in two books : Electrochemistry in Ionic Liquids - Volume 1, Fundamentals: This book critically discusses electrode-electrolyte interfacial processes, reference electrodes, ultramicroelectrode voltammetry and scanning electrochemical microscopy, semi-integral and convolution voltammetry, and small-angle X-ray scattering coupled with voltammetry. The structure and properties of protic ionic liquids, deep-eutectic solvents, task-specific ionic liquids, polymeric ion gels, and lithium-ion solvation, useful for electrochemical application is also critically discussed. Electrochemistry in Ionic Liquids - Volume 2, Applications: The major topics covered in this book include electrodeposition and electroless deposition, voltammetry of adhered microparticles, electrochemistry of organic and organometallic compounds, electrocatalytic reactions, oxygen reduction reaction, ionic liquids in surface protection and lubrication, current industrial application of ionic liquids, and challenges, issues and recycling methods of ionic liquids in industrial developments.

Dr. Angel A. J. Torriero is a Lecturer of Chemistry and Electrochemistry at Deakin University, Melbourne, Australia. He has published more than 50-refereed papers (h-index = 18; Scopus, November 2014), six book chapters, several patents, and one book, Electrochemical Properties and Applications of Ionic Liquids in 2011. Dr. Torriero has a broad interest in both fundamental and applied electrochemistry and has made significant contributions in a number of fields, including analytical electrochemistry, biosensor, bioelectrochemistry, organic and organometallic electrochemistry, and most recently internal reference systems for ionic liquids.

Dr. Angel A. J. Torriero is a Lecturer of Chemistry and Electrochemistry at Deakin University, Melbourne, Australia. He has published more than 50-refereed papers (h-index = 18; Scopus, November 2014), six book chapters, several patents, and one book, Electrochemical Properties and Applications of Ionic Liquids in 2011. Dr. Torriero has a broad interest in both fundamental and applied electrochemistry and has made significant contributions in a number of fields, including analytical electrochemistry, biosensor, bioelectrochemistry, organic and organometallic electrochemistry, and most recently internal reference systems for ionic liquids.

Preface for First Volume 6
Preface for Second Volume 8
Contents 10
Contributors 14
About the Editor 18
Chapter 11: Introduction 19
References 21
Part III: Electrodeposition in Ionic Liquids 22
Chapter 12: Electrodeposition of Semiconductors in Ionic Liquids 23
12.1 Introduction 23
12.2 II-VI Compound Semiconductors 25
12.2.1 CdTe 25
12.2.2 ZnTe 25
12.2.3 CdS 26
12.2.4 ZnS 26
12.2.5 CdSe 27
12.2.6 ZnO 27
12.3 III-V Compound Semiconductors 28
12.3.1 GaAs 28
12.3.2 InSb 28
12.3.3 AlSb 29
12.4 Other Compound Semiconductors 29
12.4.1 SnS 29
12.4.2 ZnSb 30
12.5 Elemental Semiconductors 30
12.5.1 Si 30
12.5.2 Ge 33
12.5.3 SixGe1-x 35
12.6 Semiconductor Nanostructures 37
12.6.1 Nanowires, Nanotubes, and Nanorods 37
12.6.2 Macroporous Structures 39
12.7 Concluding Remarks 41
References 42
Chapter 13: A Disproportionation Reaction-Driven Electroless Deposition of Metals in RTILs 47
13.1 Introduction 47
13.2 Disproportionation Reaction 50
13.2.1 Disproportionation Reaction of Gold in RTILs 51
13.2.2 Disproportionation Reaction of Platinum in RTILs 54
13.2.2.1 Redox Behavior of [PtIVCl6]2- and [PtIICl4]2- in [DEME][BF4] [6] 54
13.2.2.2 Disproportionation Reaction of [PtIICl4]2- in [DEME][BF4] 56
13.2.2.3 Effects of Proton, Anion, and Temperature on the Disproportionation Reaction of [PtIICl4]2- [49] 59
13.2.2.4 Mechanism of Electroless Deposition of Pt 59
13.3 Disproportionation Reaction of Copper in RTILs 61
13.4 Conclusion 62
References 63
Part IV: Reactions in Ionic Liquids 67
Chapter 14: Voltammetry of Adhered Microparticles in Contact with Ionic Liquids: Principles and Applications 68
14.1 Introduction 68
14.2 Electrode Preparation and Experimental Setup 70
14.3 Basic Principles 71
14.3.1 Voltammetry of Adhered Microparticles in Contact with Bulk Ionic Liquids 71
14.3.2 Voltammetry of Adhered Microparticles in Contact with a Thin Layer of Ionic Liquid 78
14.4 Applications 81
14.4.1 Measurement of Reversible Potentials for Compounds with Slow Dissolution Kinetics 81
14.4.2 Measurements of the Kinetics of First-Order Homogeneous Reactions Coupled to Heterogeneous Electron Transfer 84
14.4.3 Voltammetric Measurements on Reactive Species 87
14.4.3.1 Studies with Compounds that React with the Ionic Liquid or an Impurity such as Water Present in the Ionic Liquid 87
14.4.3.2 Studies with Compounds with Products from Reduction or Oxidation That React with the Ionic Liquid or an Impurity Such... 89
14.5 Conclusions 92
References 93
Chapter 15: Electrochemical Reaction of Organic Compounds in Ionic Liquids 97
15.1 Introduction 97
15.2 Oxidation Reactions 98
15.2.1 Oxidation of Aromatic Rings 98
15.2.2 Oxidation of Amines 103
15.2.3 Oxidation of Sulfur-Containing Compounds 105
15.3 Reduction Reactions 105
15.3.1 Reduction of Conjugated Alkenes 105
15.3.2 Reduction of Halogenated Organic Compounds 108
15.3.3 Reduction of Aromatic Rings 112
15.3.4 Reduction of Carbonyl Compounds 114
15.3.5 Reduction of Nitro-Containing Compounds 119
15.4 Conclusions 122
References 122
Chapter 16: Electrode Reactions of Tris(2,2-Bipyridine) Complexes of Some Transition Metals in Ionic Liquids 126
16.1 Introduction 126
16.2 Some Tips on Electrochemical Measurements in ILs 127
16.3 Redox Reactions of the Tris(bpy) Complexes of Some Transition Metals 129
16.4 Diffusion of Tris(bpy) Complexes in Some ILs 131
16.5 Rate Constants of Tris(bpy) Complexes in Some ILs 135
16.6 Temperature Dependence of the Redox Potentials of [M(bpy)3]n+1/n 139
16.7 Concluding Remarks 142
References 142
Chapter 17: Electrocatalysis in Room Temperature Ionic Liquids 144
17.1 Introduction 144
17.2 Protic Ionic Liquids 146
17.3 Electrocatalysis of the Oxygen Reduction Reaction in RTILs 147
17.4 Electrocatalysis of the H2 Oxidation and H2 Evolution Reactions in RTILs 152
17.5 Overview of the Roles of Adsorbates During Electrocatalysis in RTILs 155
17.5.1 The CO Oxidation and Methanol Oxidation Reactions in RTILs 156
17.5.2 Hydrazine Oxidation in RTILs 160
17.6 Concluding Remarks 161
References 162
Chapter 18: Oxygen Reduction Reaction in Ionic Liquids: An Overview 168
18.1 Introduction 168
18.2 Mechanism in Imidazolium-Based Ionic Liquids 171
18.2.1 Influence of Protic Additives on the ORR in Imidazolium-Based Ionic Liquids 176
18.3 Mechanism in Quaternary Ammonium-Based Ionic Liquids 179
18.4 Mechanism in Pyrrolidinium-Based Ionic Liquids 180
18.5 Mechanism in Quaternary Phosphonium-Based Ionic Liquids 181
18.6 Calculation of Diffusion and Concentration of Oxygen in Ionic Liquids 186
18.7 Conclusions 188
References 189
Part V: Applications 191
Chapter 19: Ionic Liquids in Surface Protection 192
19.1 Ionic Liquids in Surface Protection 192
19.1.1 Corrosion Protection 197
19.1.1.1 Lithium and Lithium Alloys 197
19.1.1.2 Magnesium and Magnesium Alloys 198
19.1.1.3 Steel 201
19.1.1.4 Copper and Copper Alloys 204
19.1.1.5 Aluminium Alloys 206
19.2 Ionic Liquids in Lubrication and Tribology 207
19.2.1 Conventional IL Lubricants 207
19.2.2 Halogen-Free IL Lubricants 208
19.2.3 IL Nanolubricants and Nanocoatings 209
19.2.4 Two-Component IL Films 209
19.2.5 Quantized Friction Through IL Tribolayers 210
19.2.6 Present and Future Trends in IL Tribology 212
19.2.6.1 Structure and Composition 212
19.2.6.2 Influence of Water and Moisture 213
19.2.6.3 Surface Micro-Pattern and Porosity 213
19.2.6.4 IL-Nanophase Nanolubricants 214
19.2.6.5 Influence of Surface Charge and Applied Potential 214
19.2.6.6 Predictive Models 214
References 215
Chapter 20: Industrial Applications of Ionic Liquids 221
20.1 Introduction 221
20.2 Synthesis 225
20.2.1 Cation 225
20.2.1.1 Five-Membered Heterocyclic Cations 225
20.2.1.2 Six-Membered and Benzo-Fused Heterocyclic Cations 226
20.2.1.3 Ammonium, Phosphonium, and Sulfonium-Based Cations 227
20.2.1.4 Functionalized Imidazolium Cations 228
20.2.1.5 Chiral Cations 228
20.2.2 Anions 229
20.2.3 Purification of Ionic Liquids 231
20.2.3.1 Common IL Impurities 231
20.2.3.2 Characterization of Impurities 233
20.3 Industrial Applications 234
20.3.1 BASIL´s Process 235
20.3.2 Dimersol Process 237
20.3.3 DifasolTM Process 238
20.3.4 Degussa 240
20.3.4.1 Hydrosilylation 240
20.3.4.2 Paint Additives 243
20.3.4.3 Lithium-Ion Batteries 244
20.3.5 IoLiTec 244
20.3.6 Central Glass Co., Ltd. 246
20.3.7 Eastman Chemical Company 247
20.3.8 Eli Lilly 248
20.3.9 PetroChina 248
20.3.10 Air Products 249
20.3.11 Others 250
20.4 Challenges, Issues, and Recycling Methods of Ionic Liquids 250
20.4.1 Cost of ILs 250
20.4.2 Stability 253
20.4.3 Waste Disposal 253
20.4.4 Recycling Methods of Ionic Liquids 254
20.5 Conclusion 257
References 258
Symbols and Abbreviations 262
Ionic Liquid Abbreviations 262
Cations 262
Anions 264
Chemical Abbreviations 265
Abbreviations 267
Roman Symbols 269
Greek Symbols 272
Index for First Volume 273
Index for Second Volume 273

Erscheint lt. Verlag 17.7.2015
Zusatzinfo XVII, 275 p. 194 illus., 27 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Maschinenbau
Schlagworte Electrochemical Devices • Electrochemisty • Electrodeposition • Ionic liquids • lithium batteries • Redox reactions
ISBN-10 3-319-15132-0 / 3319151320
ISBN-13 978-3-319-15132-8 / 9783319151328
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99