A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications - Dmitri A. Viattchenin

A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

Buch | Softcover
XII, 227 Seiten
2015 | 2013
Springer Berlin (Verlag)
978-3-642-44301-5 (ISBN)
106,99 inkl. MwSt
In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.

The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects. The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover, a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani's fuzzy inference systems is introduced. This book addresses engineers, scientists, professors, students and post-graduate students, who are interested in and work with fuzzy clustering and its applications

Introduction.- Heuristic Algorithms of Possibilistic Clustering.- Clustering Approaches for the Uncertain Data.- Applications of the Heuristic Algorithms of Possibilistic Clustering.

Erscheint lt. Verlag 22.5.2015
Reihe/Serie Studies in Fuzziness and Soft Computing
Zusatzinfo XII, 227 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 373 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte artificial intelligence (incl. robotics) • Clustering with Partial Supervision • Computational Intelligence • data mining and knowledge discovery • Engineering • Fuzzy Clustering • Intelligent Data Analysis • Intuitionistic Fuzzy Sets • Knowledge-based Clustering • Possibilistic Clustering • Uncertain Data Processing
ISBN-10 3-642-44301-X / 364244301X
ISBN-13 978-3-642-44301-5 / 9783642443015
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90