Reliability Characterisation of Electrical and Electronic Systems

Reliability Characterisation of Electrical and Electronic Systems (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
274 Seiten
Elsevier Science (Verlag)
978-1-78242-225-9 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
180,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices.


This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices. The text describes the reliability behavior of electrical and electronic systems. It takes an empirical scientific approach to reliability engineering to facilitate a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation. After introducing the fundamentals and background to reliability theory, the text moves on to describe the methods of reliability analysis and charactersation across a wide range of applications. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation

Front Cover 1
Reliability Characterisation of Electrical and Electronic Systems 4
Copyright 5
Contents 6
List of contributors 10
Woodhead Publishing Series in Electronic and Optical Materials 12
Foreword 16
Chapter 1: Introduction 18
1.1. Introduction 18
1.2. The focus of the book 18
1.2.1. Reliability characterisation 19
1.2.2. Electrical and electronic systems 20
1.2.3. The readers and the contributing authors 20
1.3. Reliability science and engineering fundamentals (Chapters 2-4Chapter 2Chapter 3Chapter 4) 20
1.3.1. Reliability and stupidity 21
1.3.2. Physics-of-failure thinking 22
1.3.3. Acquiring observational evidence 23
1.4. Reliability methods in component and system development (Chapters 5-9Chapter 5Chapter 6Chapter 7Chapter 8Chapter 9) 23
1.4.1. Components and devices 24
1.4.2. Micro- and nanointegrated circuits 24
1.4.3. More complex systems 25
1.5. Reliability modelling and testing in specific applications (Chapters 10 and 11Chapter 10Chapter 11) 25
1.5.1. Application examples 25
1.5.2. Verification techniques 26
1.5.3. Block modelling with ALT techniques 26
1.6. Conclusion 26
References 27
Chapter 2: Reliability and stupidity 28
2.1. Introduction 28
2.2. Common mistakes in reliability engineering 29
2.2.1. Inadequate integration of reliability engineering with product development 30
2.2.2. Focus on ``probability´´ in conventional definition of reliability engineering 32
2.2.3. Quantification of reliability 33
2.2.4. Ignoring cause and effect relationship in reliability engineering 34
2.2.5. Incorrect understanding of the meaning of MTBF 35
2.2.6. Inadequate failure testing during product development 36
2.2.7. Reliability engineering activities performed at incorrect time during development 36
2.2.8. Reliability engineering activities performed by incorrect personnel 37
2.2.9. Non-value adding reliability engineering activities 38
2.2.10. Incorrect viewpoint on cost of reliability 39
2.3. Conclusion 41
References 41
Chapter 3: Physics-of-failure (PoF) methodology for electronic reliability 44
3.1. Introduction 44
3.2. Reliability 44
3.3. PoF models 46
3.4. PoF reliability assessment 49
3.5. Applications of PoF to ensure reliability 51
3.6. Summary and areas of future interest 54
References 55
Chapter 4: Modern instruments for characterizing degradation in electrical and electronic equipment 60
4.1. Introduction 60
4.1.1. Modern instruments 60
4.2. Destructive techniques 60
4.2.1. Cross sections 60
4.2.2. Jet etching and depotting components 62
4.2.3. Chemical analysis 63
4.2.3.1. Ion chromatography 63
4.2.3.2. Infrared spectroscopy 63
4.2.3.3. Raman spectroscopy 65
4.2.3.4. Mass spectrometric techniques 66
4.2.3.5. SEM imaging with energy-dispersive X-ray and wavelength-dispersive X-ray analyses 67
4.2.3.6. Focused ion beam sample preparation 68
4.2.3.7. Transmission electron microscopy (TEM) 68
4.3. Nondestructive techniques 69
4.3.1. Visual inspection 69
4.3.2. Optical microscopy 69
4.3.2.1. Stereomicroscopes 69
4.3.2.2. Metallurgical microscopes 70
4.3.2.3. Transmission microscopes 70
4.3.2.4. Combination systems 70
4.3.3. X-ray imaging techniques 71
4.3.4. Infrared thermography 72
4.3.5. X-ray fluorescence analysis 72
4.3.6. Acoustic microscopy 73
4.4. In situ measurement techniques 74
4.4.1. Electrical measurements 74
4.4.1.1. Electrical conductivity/resistivity measurement 75
4.4.1.2. Passive component measurement 76
4.4.2. Measurement of physical characteristics 76
4.4.2.1. Profilometer surface roughness 76
4.4.2.2. Atomic force microscopy 77
4.5. Conclusions 78
4.5.1. Future trends 78
4.5.2. Sources of further information 78
References 79
Chapter 5: Reliability building of discrete electronic components 80
5.1. Introduction 80
5.2. Reliability building 80
5.2.1. Design for reliability 81
5.2.2. Process reliability 82
5.2.3. Screening and burn-in 82
5.3. Failure risks and possible corrective actions 84
5.3.1. Discrete electronic components 84
5.3.2. Capacitors 84
5.3.2.1. Aluminum electrolytic capacitors 84
5.3.2.2. Tantalum capacitors 86
5.3.3. Diodes 86
5.3.3.1. Silicon diodes 87
5.3.3.2. Nonsilicon diodes 89
5.3.4. Transistors 92
5.3.4.1. Silicon transistors 92
5.3.4.2. Nonsilicon transistors 94
5.4. Effect of electrostatic discharge on discrete electronic components 95
5.4.1. Electrostatic discharge (ESD) 95
5.4.2. ESD-induced failures 95
5.4.3. ESD robust systems 95
5.5. Conclusions 96
References 96
Chapter 6: Reliability of optoelectronics 100
6.1. Introduction 100
6.2. Overview of optoelectronics reliability 101
6.3. Approaches and recent developments 102
6.4. Case study: reliability of buried heterostructure (BH) InP semiconductor lasers 107
6.4.1. Effects of p-metal contact 108
6.4.1.1. p-metallization 108
6.4.1.2. Plasma damage 112
6.4.1.3. p-InGaAs contact layer thickness 113
6.4.2. Effects of BH interfaces 113
6.4.3. Effects of substrate quality 114
6.5. Reliability extrapolation and modeling 115
6.5.1. Sublinear model extrapolation 115
6.5.2. Temperature and current accelerations 117
6.6. Electrostatic discharge (ESD) and electrical overstress (EOS) 118
6.6.1. ESD damage characteristics 119
6.6.2. ESD polarity effect 120
6.6.3. ESD soft and hard degradation behaviors 123
6.6.4. Size effect 124
6.6.5. BH versus RWG lasers 126
6.7. Conclusions 126
References 127
Chapter 7: Reliability of silicon integrated circuits 132
7.1. Introduction 132
7.2. Reliability characterization approaches 133
7.3. Integrated circuit (IC) wear-out failure mechanisms 135
7.3.1. Transistor degradation 135
7.3.1.1. Time-dependent dielectric breakdown of gate dielectrics 136
7.3.1.2. Bias temperature instabilities 138
Negative bias temperature instability 138
Positive bias temperature instability 140
Impact of BTI on digital circuit reliability 140
7.3.1.3. Hot carrier aging 142
7.3.2. Interconnect degradation 142
7.3.2.1. Electromigration 143
7.3.2.2. Stress voiding 146
7.3.2.3. Time-dependent breakdown of interlevel dielectrics 146
7.3.3. SER in Si circuits 148
7.3.3.1. Mechanisms and technology trends 148
7.3.3.2. Simulation of circuit SER: virtual qualification 150
7.4. Summary and conclusions 150
Acknowledgments 152
References 152
Chapter 8: Reliability of emerging nanodevices 160
8.1. Introduction to emerging nanodevices 160
8.2. Material and architectural evolution of nanodevices 163
8.3. Failure mechanisms in nanodevices 165
8.3.1. Front-end failure mechanisms 166
8.3.2. Back-end failure mechanisms 171
8.3.3. Package-level failure mechanisms 174
8.3.4. Failure mechanisms in memory technology 175
8.4. Reliability challenges: opportunities and issues 177
8.5. Summary and conclusions 180
References 180
Chapter 9: Design considerations for reliable embedded systems 186
9.1. Introduction 186
9.2. Hardware faults 187
9.2.1. Logic faults 187
9.2.2. Timing faults 188
9.2.3. Trends of hardware faults 189
9.3. Reliable design principles 190
9.3.1. Hardware redundancy 190
9.3.2. Error hardening 192
9.3.3. EDAC codes 193
9.3.4. Re-execution and application checkpointing 194
9.3.5. Industrial practices 195
9.3.6. Design trade-offs 196
9.4. Low-cost reliable design 197
9.4.1. Microarchitectural approaches 198
9.4.2. System-level approaches 200
9.4.2.1. Runtime reliability management 200
9.4.2.2. Design-time reliability optimization 201
9.4.3. Software approaches 202
9.5. Future research directions 204
9.5.1. Cross-layer system adaptation 204
9.5.2. Quality-of-experience-aware design 205
9.5.3. Programming models 206
9.5.4. Reliable design automation 206
9.6. Conclusions 207
References 207
Chapter 10: Reliability approaches for automotive electronic systems 212
10.1. Introduction 212
10.2. Circuit reliability challenges for the automotive industry 212
10.3. Circuit reliability checking for the automotive industry 213
10.3.1. Voltage-dependent checking 213
10.3.2. Negative voltage checking and reverse current 214
10.3.2.1. Schematic 214
10.3.2.2. Layout 214
10.3.3. ESD and latch-up verification 215
10.3.4. EOS susceptibility 215
10.4. Using advanced electronic design automation (EDA) tools 217
10.4.1. Voltage propagation 218
10.4.2. Circuit recognition 218
10.4.3. Current density and point-to-point checking 219
10.4.4. Topology-aware geometric checking 221
10.4.5. Voltage-dependent DRC 222
10.5. Case studies and examples 225
10.5.1. Case study 1 225
10.5.2. Case study 2 226
10.5.3. Case study 3 228
10.6. Conclusion 229
Acknowledgment 229
References 229
Chapter 11: Reliability modeling and accelerated life testing for solar power generation systems 232
11.1. Introduction 232
11.2. Overview 232
11.2.1. Brief overview of solar power generation systems 233
11.2.2. Overview of the chapter 235
11.3. Challenges 235
11.3.1. Failures 236
11.3.2. Bankability 237
11.3.3. Product testing 237
11.4. Modeling 239
11.5. Accelerated life testing (ALT) 243
11.5.1. Time compression 244
11.5.2. Using three stresses to create a model 244
11.5.3. Using an existing model 245
11.5.3.1. Expected failure mechanisms and lifetime data 246
11.5.3.2. Reliability calculations 246
IGBT reliability calculations 250
11.5.4. Modeling reliability and availability 251
11.5.4.1. Vendor data reliability calculation example 252
11.5.5. Using ALT 254
11.6. ALT example: how to craft a thermal cycling ALT plan for SnAgCu (SAC) solder failure mechanism 255
11.6.1. Objective 255
11.6.2. ALT plan summary 255
11.6.3. Background 255
11.6.4. ALT approach 256
11.6.5. Thermal cycling ALT plan details 256
11.6.6. Environmental conditions 256
11.6.6.1. Measured temperature rise 256
11.6.6.2. Climatic data 256
11.6.6.3. Product A average daily thermal range 257
11.6.6.4. Product B average daily thermal range 257
11.6.7. Temperatures 257
11.6.8. Dwell times 257
11.6.9. Acceleration factor determination 257
11.6.9.1. Product A acceleration factor 257
11.6.9.2. Product B acceleration factor 258
11.6.10. Sample-size determination 258
11.6.10.1. Product A sample size 259
11.6.10.2. Product B sample size 259
11.6.11. Assumptions 259
11.7. How to craft a temperature, humidity, and bias ALT plan for CMOS metallization corrosion 260
11.7.1. Objective 260
11.7.2. ALT plan summary 260
11.7.3. Background 260
11.7.4. ALT approach 260
11.7.5. THB ALT plan details 261
11.7.6. Environmental conditions 261
11.7.6.1. Measured temperature rise 261
11.7.6.2. Climatic data 261
11.7.6.3. Product A average daily thermal range 262
11.7.6.4. Product B average daily thermal range 262
11.7.7. Acceleration factor determination 262
11.7.7.1. Product A acceleration factor 262
11.7.7.2. Product B acceleration factor 263
11.7.8. Sample-size determination 263
11.7.8.1. Product A sample size 263
11.7.8.2. Product B sample size 263
11.7.9. Assumptions 264
11.8. Developments and opportunities 264
11.9. Conclusions 265
11.10. Sources of further information 265
References 265
Index 268

Woodhead Publishing Series in Electronic and Optical Materials


1 Circuit analysis
J. E. Whitehouse

2 Signal processing in electronic communications: For engineers and mathematicians
M. J. Chapman, D. P. Goodall and N. C. Steele

3 Pattern recognition and image processing
D. Luo

4 Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code
S. M. Bozic and R. J. Chance

5 Cable engineering for local area networks
B. J. Elliott

6 Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American Standards Second edition
B. J. Elliott

7 Microscopy techniques for materials science
A. Clarke and C. Eberhardt

8 Materials for energy conversion devices
Edited by C. C. Sorrell, J. Nowotny and S. Sugihara

9 Digital image processing: Mathematical and computational methods Second edition
J. M. Blackledge

10 Nanolithography and patterning techniques in microelectronics
Edited by D. Bucknall

11 Digital signal processing: Mathematical and computational methods, software development and applications Second edition
J. M. Blackledge

12 Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications
Edited by Z.-G. Ye

13 Materials for fuel cells
Edited by M. Gasik

14 Solid-state hydrogen storage: Materials and chemistry
Edited by G. Walker

15 Laser cooling of solids
S. V. Petrushkin and V. V. Samartsev

16 Polymer electrolytes: Fundamentals and applications
Edited by C. A. C. Sequeira and D. A. F. Santos

17 Advanced piezoelectric materials: Science and technology
Edited by K. Uchino

18 Optical switches: Materials and design
Edited by S. J. Chua and B. Li

19 Advanced adhesives in electronics: Materials, properties and applications
Edited by M. O. Alam and C. Bailey

20 Thin film growth: Physics, materials science and applications
Edited by Z. Cao

21 Electromigration in thin films and electronic devices: Materials and reliability
Edited by C.-U. Kim

22 In situ characterization of thin film growth
Edited by G. Koster and G. Rijnders

23 Silicon-germanium (SiGe) nanostructures: Production, properties and applications in electronics
Edited by Y. Shiraki and N. Usami

24 High-temperature superconductors
Edited by X. G. Qiu

25 Introduction to the physics of nanoelectronics
S. G. Tan and M. B. A. Jalil

26 Printed films: Materials science and applications in sensors, electronics and photonics
Edited by M. Prudenziati and J. Hormadaly

27 Laser growth and processing of photonic devices
Edited by N. A. Vainos

28 Quantum optics with semiconductor nanostructures
Edited by F. Jahnke

29 Ultrasonic transducers: Materials and design for sensors, actuators and medical applications
Edited by K. Nakamura

30 Waste electrical and electronic equipment (WEEE) handbook
Edited by V. Goodship and A. Stevels

31 Applications of ATILA FEM software to smart materials: Case studies in designing devices
Edited by K. Uchino and J.-C. Debus

32 MEMS for automotive and aerospace applications
Edited by M. Kraft and N. M. White

33 Semiconductor lasers: Fundamentals and applications
Edited by A. Baranov and E. Tournie

34 Handbook of terahertz technology for imaging, sensing and communications
Edited by D. Saeedkia

35 Handbook of solid-state lasers: Materials, systems and applications
Edited by B. Denker and E. Shklovsky

36 Organic light-emitting diodes (OLEDs): Materials, devices and applications
Edited by A. Buckley

37 Lasers for medical applications: Diagnostics, therapy and surgery
Edited by H. Jelínková

38 Semiconductor gas sensors
Edited by R. Jaaniso and O. K. Tan

39 Handbook of organic materials for optical and (opto)electronic devices: Properties and applications
Edited by O. Ostroverkhova

40 Metallic films for electronic, optical and magnetic applications: Structure, processing and properties
Edited by K. Barmak and K. Coffey

41 Handbook of laser welding technologies
Edited by S. Katayama

42 Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems
Edited by M. Feldman

43 Laser spectroscopy for sensing: Fundamentals, techniques and applications
Edited by M. Baudelet

44 Chalcogenide glasses: Preparation, properties and applications
Edited by J.-L. Adam and X. Zhang

45 Handbook of MEMS for wireless and mobile applications
Edited by D. Uttamchandani

46 Subsea optics and imaging
Edited by J. Watson and O. Zielinski

47 Carbon nanotubes and graphene for photonic applications
Edited by S. Yamashita, Y. Saito and J. H. Choi

48 Optical biomimetics: Materials and applications
Edited by M. Large

49 Optical thin films and coatings
Edited by A. Piegari and F. Flory

50 Computer design of diffractive optics
Edited by V. A. Soifer

51 Smart sensors and MEMS: Intelligent devices and microsystems for
industrial applications
Edited by S. Nihtianov and A. Luque

52 Fundamentals of femtosecond optics
S. A. Kozlov and V. V. Samartsev

53 Nanostructured semiconductor oxides for the next generation of electronics and functional devices: Properties and applications
S. Zhuiykov

54 Nitride semiconductor light-emitting diodes (LEDs): Materials, technologies and applications
Edited by J. J. Huang, H. C. Kuo and S. C. Shen

55 Sensor technologies for civil infrastructures

Volume 1: Sensing hardware and data collection methods for performance assessment
Edited by M. Wang, J. Lynch and H. Sohn

56 Sensor technologies for civil...

Erscheint lt. Verlag 31.5.2015
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-78242-225-0 / 1782422250
ISBN-13 978-1-78242-225-9 / 9781782422259
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 12,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 8,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99