Imaging and Manipulation of Adsorbates Using Dynamic Force Microscopy (eBook)

Proceedings from the AtMol Conference Series, Nottingham, UK, April 16-17, 2013
eBook Download: PDF
2015 | 2015
XX, 154 Seiten
Springer International Publishing (Verlag)
978-3-319-17401-3 (ISBN)

Lese- und Medienproben

Imaging and Manipulation of Adsorbates Using Dynamic Force Microscopy -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy provides an overview of the latest developments in dynamic force microscopy (DFM) of atoms, molecules, and nanoparticles adsorbed on solid surfaces. Significant advances in the capabilities of this technique have been made in the last decade and this book represents a timely snapshot of the major research themes in the field, with a particular focus on the manipulation of matter at the atomic and (sub)molecular levels. This edited volume will be of keen interest to researchers active in nanoscience and its various sub-fields including, in particular, scanning probe microscopy.  This book expands on the previous volumes in the series Advances in Atom and Single Molecule Machines. DFM is an exceptionally powerful tool for the imaging and probing of adsorbates on insulators and is now a component of the type of multiprobe interconnection systems described in Vol. 1 of the series. DFM can also be used to translate atoms and molecules in the context of the fabrication of the type of logic gates described in Vol. 2. When used in conjunction with STM, DFM also enables a detailed comparison of the chemical 'architecture' of a molecule with the spatial distribution of its orbital density, as described in Vol. 3. In this book readers will gain key insights into the current capabilities, and future potential, of dynamic force microscopy.

Philip Moriarty is a Professor of Physics and an Engineering & Physical Sciences Research Council (EPSRC) Fellow in the School of Physics and Astronomy, University of Nottingham. His research interests span a number of topical themes in nanometre scale science with a particular recent focus on single atom/molecule imaging and manipulation using dynamic force microscopy. In addition to his coordination of a number of nanoscience-focussed European networks (including, most recently, ACRITAS(Actuation and Characterisation at the Single Bond Limit)), he was Chair of the Institute of Physics Nanoscale Physics and Technology Group from 2009 - 2012, is currently a member of the Science Board of the UK Institute of Physics, and was a member of the EPSRC Strategic Advisory Team for Physics from 2005 - 2006.
Moriarty has a keen interest in outreach activities and both science and higher education funding policy. In addition to participating in a number of research council-funded public engagement projects (including Giants of the Infinitesimal), and his membership of the Steering Committee of the Council for the Defence of British Universities, he has interacted with national and international media (including The Independent, The Guardian, Times Higher Education, BBC Radio 4, Die Zeit, and The Economist) on these issues. He is also a regular contributor to Nottingham's Sixty Symbols YouTube project which has, as of June 2013, attracted a little over 20 million views (across - 200 videos). Although he does not share his infamous namesake's fascination with the binomial theorem, in his spare time Moriarty enjoys exploring the relationships between mathematics/physics and music.

Sébastien GAUTHIER is 'directeur de recherche' au Centre d'élaboration de matériaux et d'études structurales (CEMES) in Toulouse (France). He joined the 'Groupe de Physique des Solides de l'Ecole Normale Supérieure' (Paris) in 1981 to study inelastic electron tunneling spectroscopy in metal-insulator-metal junctions. He is working in the scanning tunnelling microscopy (STM) field since 1986. He built several UHV-STM to study metal-on-metal crystalline growth. He moved to Toulouse, in CEMES, in 1997 to develop STM experiments on single adsorbed molecules on metallic surfaces. He is involved in non-contact Atomic Force microscopy (nc-AFM) since 2002, for studying single molecules adsorbed on insulating surfaces, with a special interest in charge manipulation on this type of systems.

Philip Moriarty is a Professor of Physics and an Engineering & Physical Sciences Research Council (EPSRC) Fellow in the School of Physics and Astronomy, University of Nottingham. His research interests span a number of topical themes in nanometre scale science with a particular recent focus on single atom/molecule imaging and manipulation using dynamic force microscopy. In addition to his coordination of a number of nanoscience-focussed European networks (including, most recently, ACRITAS(Actuation and Characterisation at the Single Bond Limit)), he was Chair of the Institute of Physics Nanoscale Physics and Technology Group from 2009 - 2012, is currently a member of the Science Board of the UK Institute of Physics, and was a member of the EPSRC Strategic Advisory Team for Physics from 2005 – 2006. Moriarty has a keen interest in outreach activities and both science and higher education funding policy. In addition to participating in a number of research council-funded public engagement projects (including Giants of the Infinitesimal), and his membership of the Steering Committee of the Council for the Defence of British Universities, he has interacted with national and international media (including The Independent, The Guardian, Times Higher Education, BBC Radio 4, Die Zeit, and The Economist) on these issues. He is also a regular contributor to Nottingham’s Sixty Symbols YouTube project which has, as of June 2013, attracted a little over 20 million views (across ~ 200 videos). Although he does not share his infamous namesake's fascination with the binomial theorem, in his spare time Moriarty enjoys exploring the relationships between mathematics/physics and music. Sébastien GAUTHIER is "directeur de recherche" au Centre d'élaboration de matériaux et d'études structurales (CEMES) in Toulouse (France). He joined the "Groupe de Physique des Solides de l'Ecole Normale Supérieure" (Paris) in 1981 to study inelastic electron tunneling spectroscopy in metal-insulator-metal junctions. He is working in the scanning tunnelling microscopy (STM) field since 1986. He built several UHV-STM to study metal-on-metal crystalline growth. He moved to Toulouse, in CEMES, in 1997 to develop STM experiments on single adsorbed molecules on metallic surfaces. He is involved in non-contact Atomic Force microscopy (nc-AFM) since 2002, for studying single molecules adsorbed on insulating surfaces, with a special interest in charge manipulation on this type of systems.

Pauli's Principle in Probe Microscopy.- Mechanical and Electrical Properties of Single Molecules.- Atom Manipulation Using Atomic Force Microscopy at Room Temperature.- A Considered Approach to Force Extraction from Dynamic Force Microscopy Measurements.- Theoretical Challenges of Simultaneous NC-AFM/STM Experiments.- Manipulation of Metal Nanoparticles on Insulating Surfaces.- Imaging of Defects on Ge(001):H by Non-Contact Atomic Force Microscopy.- Adsorption Structures of Amino Acids on Calcite/104).- NC-AFM and KPFM Study of the Adsorption of a Triphenylene Derivative on KBr(001).

Erscheint lt. Verlag 28.4.2015
Reihe/Serie Advances in Atom and Single Molecule Machines
Advances in Atom and Single Molecule Machines
Zusatzinfo XX, 154 p. 62 illus., 40 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik
Schlagworte Atomic force microscopy • Atom Technology • Dynamic Force Microscopy • High Resolution Imaging • Non-Contact Atomic Force Microscopy • Picotechnology • Scanning Probe Microscopy • Single Atom Spectroscopy • Single molecule spectroscopy
ISBN-10 3-319-17401-0 / 3319174010
ISBN-13 978-3-319-17401-3 / 9783319174013
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99