Plasma Etching Processes for Interconnect Realization in VLSI -

Plasma Etching Processes for Interconnect Realization in VLSI (eBook)

Nicolas Posseme (Herausgeber)

eBook Download: PDF | EPUB
2015 | 1. Auflage
128 Seiten
Elsevier Science (Verlag)
978-0-08-100590-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
85,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is the first of two books presenting the challenges and future prospects of plasma etching processes for microelectronics, reviewing the past, present and future issues of etching processes in order to improve the understanding of these issues through innovative solutions.
This book focuses on back end of line (BEOL) for high performance device realization and presents an overview of all etch challenges for interconnect realization as well as the current etch solutions proposed in the semiconductor industry. The choice of copper/low-k interconnect architecture is one of the keys for integrated circuit performance, process manufacturability and scalability.
Today, implementation of porous low-k material is mandatory in order to minimize signal propagation delay in interconnections. In this context, the traditional plasma process issues (plasma-induced damage, dimension and profile control, selectivity) and new emerging challenges (residue formation, dielectric wiggling) are critical points of research in order to control the reliability and reduce defects in interconnects. These issues and potential solutions are illustrated by the authors through different process architectures available in the semiconductor industry (metallic or organic hard mask strategies).
  • Presents the difficulties encountered for interconnect realization in very large-scale integrated (VLSI) circuits
  • Focused on plasma-dielectric surface interaction
  • Helps you further reduce the dielectric constant for the future technological nodes

This is the first of two books presenting the challenges and future prospects of plasma etching processes for microelectronics, reviewing the past, present and future issues of etching processes in order to improve the understanding of these issues through innovative solutions.This book focuses on back end of line (BEOL) for high performance device realization and presents an overview of all etch challenges for interconnect realization as well as the current etch solutions proposed in the semiconductor industry. The choice of copper/low-k interconnect architecture is one of the keys for integrated circuit performance, process manufacturability and scalability. Today, implementation of porous low-k material is mandatory in order to minimize signal propagation delay in interconnections. In this context, the traditional plasma process issues (plasma-induced damage, dimension and profile control, selectivity) and new emerging challenges (residue formation, dielectric wiggling) are critical points of research in order to control the reliability and reduce defects in interconnects. These issues and potential solutions are illustrated by the authors through different process architectures available in the semiconductor industry (metallic or organic hard mask strategies). Presents the difficulties encountered for interconnect realization in very large-scale integrated (VLSI) circuits Focused on plasma-dielectric surface interaction Helps you further reduce the dielectric constant for the future technological nodes

1

Introduction


Nicolas Posseme; Maxime Darnon

Abstract


In 1947, the bipolar transistor was invented by Bardeen, Brattain and Shockley. Following this invention, in 1957, Kilby created five transistors simultaneously, forming the first integrated circuit (IC). In 1960, the first metal oxide semiconductor field effect transistor (MOSFET) on a silicon substrate with SiO2 gate insulator was fabricated. The MOSFETs are slow compared to bipolar devices but are easier to fabricate and have a higher layout density. But both devices (bipolar and MOSFET) suffer from high power dissipation and have a restricted use in large integrated chip.

Keywords

Chemical–mechanical planarization (CMP)

Chemical vapor deposition (CVD)

Damascene

Fluorine-doped silicon glass (FSG)

Low-k materials

Plasma-enhanced chemical vapor deposition (PECVD)

Polarizations

Semiconductor fabrication

Silicon dioxide-based films

In 1947, the bipolar transistor was invented by Bardeen, Brattain and Shockley. Following this invention, in 1957, Kilby created five transistors simultaneously, forming the first integrated circuit (IC). In 1960, the first metal oxide semiconductor field effect transistor (MOSFET) on a silicon substrate with SiO2 gate insulator was fabricated. The MOSFETs are slow compared to bipolar devices but are easier to fabricate and have a higher layout density. But both devices (bipolar and MOSFET) suffer from high power dissipation and have a restricted use in large integrated chip.

In 1963, the invention of the complementary metal oxide semiconductor (CMOS) marked a new milestone in the area of semiconductors. Indeed, the CMOS transistor has lower power dissipation and the possibility to integrate millions of CMOS transistors onto a chip. Since then, ICs have evolved from a 100-transistors chip in 1966 to multibillion transistors circuits in 2010, with the smallest device of less than 20 nm.

Semiconductor fabrication is composed of three major parts, front-end-of-line (FEOL), middle-end-of-line (MEOL) and back-end-of-line (BEOL), including different main steps such as deposition, lithography, etching and cleaning. The whole process flow represents several hundreds of steps for the manufacturing of chips.

The FEOL processes correspond to isolation, gate patterning, spacer, extension and source/drain implantation, silicide formation and dual stress liner formation.

The MEOL is mainly gate contact formation, which becomes more and more challenging as device dimensions are reduced [MEB 14].

The BEOL allows transistor functionality by electrically interconnecting transistors. Interconnects are composed of insulating layers (dielectric) and metal levels. Interconnects (see Figure 1.1) are composed of several metal levels. Each metal level is composed of horizontal metallic lines connected to the lower and upper metal levels through short vertical lines called vias.

Figure 1.1 Illustration of interconnects from metal 1 (M1) to metal 5 (M5) (left-hand side) and transverse cross section of two metal lines of a similar metal level (right-hand side)

The combination of aluminum (Al) metal lines and silicon dioxide (SiO2) as dielectric material has been used so far for interconnects in ICs. The problem lies with the constant downscaling in device dimensions resistive–capacitive (RC) delay (product of the resistance of the metal lines and their intercapacitance), dynamic power consumption (~α C.V2f for a wire, where f is the frequency of digital signal, α is the wire activity factor, V corresponds to the voltage between the two digital levels and C is the total interconnect capacitance of a wire length) and cross-talk noise. These are becoming the main issues for devices with high performances [YAM 00, DEL 99].

Indeed, as shown in Figure 1.2, the reduction of device dimensions leads to an improvement of the device performances characterized by a decrease in the gate delay as a function of the generation. But from the 0.25 μm technology nodes, interconnects (SiO2 + Al) become the limiting factor for high-performance devices leading to an increase in the total delay (see Figure 1.2).

Figure 1.2 Gate and interconnect delay versus technology generation [FUA 03]

Therefore, it is mandatory for BEOL interconnect wiring to be smaller, but also to cater for an increase in device density inducing important delay increases. Smaller dimensions require the introduction of new materials and new integration schemes.

A model at the first order can be used to estimate interconnect RC delay as shown in Figure 1.3.

Figure 1.3 Illustration of interconnect network

The resistance of one interconnect line is given by:

=ρ.LW.H

  [1.1]

where ρ is the metal resistivity, and L, W and H are the metal line length, width and height, respectively.

The level-to-level capacitance is defined by:

V=ε0.k.L.WE

  [1.2]

where E and k are the dielectric film thickness between two levels and dielectric constant, respectively, and ε0 is the permittivity of free space.

While the capacitance between the two interconnect lines is:

L=ε0.k.L.He

  [1.3]

where e is the space between two lines.

For this simple structure, the total line capacitance can be approximated by combining [1.2] and [1.3] as follows:

=CV+CL=ε0.k.(L.WE+L.He)

  [1.4]

Related to [1.1] and [1.4], the RC delay defined as the product of the resistance of the metal lines and their intercapacitance is:

=ε0.k.ρL2(1HE+1we)

  [1.5]

Therefore, related to [1.5] with the constant scaling down in dimension, the RC delay increases (see Figure 1.2). In addition, the dynamic power consumption for a wire and the cross-talk noise change with the capacitance and thus become larger when the dimensions shrink. As a result, interconnects are becoming the major limiter to device performance when dimensions are reduced.

To overcome this limitation, it was proposed to:

 replace the aluminum wiring with a metal presenting lower resistivity (ρ) [KEI 03];

 switch from conventional SiO2 (k ≈ 4.2) to an insulator with lower dielectric constant (low-k) [ROU 05, HOO 05, JOU 07a].

These changes marked a new milestone in the history of interconnects with the introduction of new integration processes and new materials.

1.1 Integration processes related to copper introduction


With a lower resistivity of about 30% compared to aluminum, copper was chosen as a new metal for interconnects [KEI 03].

Copper was introduced by IBM for the first time in a product in 1997 and since then, has widely been adopted by the semiconductor industry [VOL 10]. But switching from aluminum to copper implied to revisit the integration scheme in the BEOL. Indeed, copper is very difficult to etch using conventional plasma etching temperatures (40–60°C) due to the formation of non-volatile compounds [LEE 97, HOW 91, OHN 98]. This difficulty implied the modification of patterning and integration processes switching from metal patterning followed by dielectric filling to dielectric patterning followed by copper filling, as shown in Figure 1.4. This last approach is called damascene, referring to a method that begins by dielectric layer deposition, followed by etching structures (trenches or holes) into the dielectric.

Figure 1.4 Schematic of BEOL integration comparing conventional approach and damascene approach

To minimize the risk of metallic contamination by copper, a metallic barrier, usually made up of tantalum/tantalum nitride (Ta/TaN), is deposited before the copper. This step is then followed by the filling of structures with copper. A chemical–mechanical planarization (CMP) is finally used to remove the excess metal.

If only trenches or holes are fabricated, the method is called single damascene. In the dual damascene approach, both holes and trenches are etched into a dielectric followed by a metal fill and CMP. Since dual damascene forms at trenches and holes with one metal deposition and one CMP step, it is the favored approach. Dual damascene methods reduce the number of process steps, thus reducing fabrication costs.

1.2 Dielectric material with low-k value (<4)


The dielectric constant of materials is given by the Clausius–Mossotti equation as follows:

−1k+2=43πNα

  [1.6]

where k is the dielectric constant of the material, N is the number of molecules per volume unit (density) in the material and α is its total...

Erscheint lt. Verlag 14.4.2015
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-100590-3 / 0081005903
ISBN-13 978-0-08-100590-3 / 9780081005903
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 8,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99