Power Electronics Applied to Industrial Systems and Transports, Volume 1 -  Nicolas Patin

Power Electronics Applied to Industrial Systems and Transports, Volume 1 (eBook)

Synthetic Methodology to Converters and Components Technology
eBook Download: PDF | EPUB
2015 | 1. Auflage
192 Seiten
Elsevier Science (Verlag)
978-0-08-100459-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
75,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Power electronics is based on the switching operating mode of semiconductor components. On this basis, the concepts of type (voltage or current) and reversibility of interconnected sources make it possible to apply a methodology for the synthesis of various types of converters. Here the author presents the major types of components available, always from a user's point of view, with the gate drive/fire control and other auxiliary circuits that are required for their proper functioning (snubbers, for example). The different passive components (capacitors, coils and transformers) are discussed, as well as printed circuit technology, especially in the aspect of their design. This book also focuses on the importance of packaging by reviewing the electrical representation of components' thermal models and the currently available electronics' cooling technologies. Modeling is discussed, as well as different technological aspects used in the engineering design of an electronic power converter, useful for obtaining satisfactory performance and reliability.


  • Presenting the essential notions in power electronics from both the theoretical and technological perspectives
  • Dedicated chapters with a focus on connection rules, reversibility and impact choices of switches for converter synthesis
  • Presented from a user's perspective to enable you to apply the theory of power electronics to practical applications


Nicolas PATIN's research activities are based around PWM inverter circuits (electric and hybrid vehicles) and the aging of electrolytic capacitors
Power electronics is based on the switching operating mode of semiconductor components. On this basis, the concepts of type (voltage or current) and reversibility of interconnected sources make it possible to apply a methodology for the synthesis of various types of converters.Here the author presents the major types of components available, always from a user's point of view, with the gate drive/fire control and other auxiliary circuits that are required for their proper functioning (snubbers, for example). The different passive components (capacitors, coils and transformers) are discussed, as well as printed circuit technology, especially in the aspect of their design.This book also focuses on the importance of packaging by reviewing the electrical representation of components' thermal models and the currently available electronics' cooling technologies. Modeling is discussed, as well as different technological aspects used in the engineering design of an electronic power converter, useful for obtaining satisfactory performance and reliability. Presenting the essential notions in power electronics from both the theoretical and technological perspectives Dedicated chapters with a focus on connection rules, reversibility and impact choices of switches for converter synthesis Presented from a user's perspective to enable you to apply the theory of power electronics to practical applications

Introduction


I.1 Generic structure of an industrial variable-speed drive


A variable-speed drive such as the one shown in Figure I.1 is a useful subject for study as it allows us to include most of the functions involved in power electronics; furthermore, devices of this type are widely used in an industrial context. Factories are generally powered by a fixed-frequency alternating network (230–400 V/50 Hz in France), and most of the electrical machines (robots, conveyors, machine tools, etc.), which are used in production lines, with a power requirement of greater than or equal to 1 kW (the most widespread), use a three-phase alternating current (AC) (these are usually induction machines with squirrel cage rotors, or, more rarely, permanent magnet synchronous machines).

Figure I.1 “Typical” power design of an industrial variable-speed drive

In the cases where a variable speed function is required, these machines require a power supply with a variable frequency (and amplitude). However, the electrical network provides a fixed frequency. As we will see, it is easier to produce voltages of variable frequency (and amplitude) using a continuous source (using an inverter) than to transform an AC of frequency f1 into a new AC with frequency f2 ≠ f1 (the device used for this purpose is known as a cycloconverter and will be presented in Chapter 1, but will not be studied in detail as they are no longer widely used). The following chapters will highlight the modular nature of electronic power converters, as in the case of the variable speed-drive shown in Figure I.1. This device uses a rectifier, which allows us to pass from the AC with fixed amplitude and frequency provided by the power network to the continuous supply required by the inverter to produce a network with an AC with variable amplitude and frequency for the electrical device in question. The insulated gate bipolar transistors (IGBT) inverter acts as a rectifier (during machine braking phases), but the diode rectifier used here is unable to return this electrical energy to the network. This means that a brake chopper is needed to consume this excess energy. These different converters will be covered, in turn, over the course of the following chapters.

Before beginning our study of different converter layouts, it is important to consider the specificities of power electronics. This domain involves the control of electrical power, from the power supply to the powered load. The uses of this function are evident, but the methods used need to be covered in more detail.

I.2 Specificities of power electronics


I.2.1 Distinction between signals and energy


Unlike the branch of electronics that concerns information processing equipment (whether analog or digital, using operational amplifiers, A/D or D/A converters, microprocessors, microcontrollers or other programmable or non-programmable digital circuits), power electronics focuses on constructions that process and transform electrical energy to respond to a need. Nevertheless, there are certain similarities between the processing of digital information (digital electronics) and power electronics, due to the way in which electronic components function in switching operations. In power electronics, transistors (among other components) are used in turned off/saturated mode, which renders them equivalent to open or closed switches. While these modes of operation are similar, they do not however concern the same objectives. In digital electronics, this type of function serves multiple purposes. Examples include:

 noise immunity in digital circuits;

 programming new functions in an unmodified physical circuit1;

 improved integration (smaller circuits).

In power electronics, however, the sole aim of using switch functions in components is to maximize efficiency (and therefore minimize loss) in the converter.

I.2.2 Commutations and losses


The interest of switching-based functions may be observed by studying the (simple) construction shown in Figure I.2. This construction is made up of an input voltage source E (e.g. a battery) connected to an association in series with a resistance R (modeling, e.g. a lamp, a heating element, etc.) and a transistor T (in this case, an NPN bipolar transistor).

Figure I.2 “Simple” power modulation circuit

The equation of this simple single-loop circuit is easy to establish:

=R.IT+VT

  [I.1]

The operating point of this circuit is (graphically) the intersection between the characteristic VT(IT) of the transistor T and the load line VT = ER.IT produced by equation [I.1], as shown in Figure I.3. Note that the characteristic of the transistor is linked to the command signal applied at the base. For example, the operating point M corresponds to a base/emitter voltage VBE = VBE5: we thus obtain a voltage of VT0 between the collector and the emitter of the transistor, and the current IT traveling through the transistor is equal to IT0. The power dissipation of any dipole is the product of voltage × current, in this case VT.IT. The temperature of a component is directly linked to the power dissipation, and constructor documentation for electronic components specifies a maximum junction temperature for operation without damaging the component. Consequently, an electronic component (associated with correctly dimensioned cooling equipment) may be characterized by a maximum power Pmax. The isopower curve PT = VT.IT = Pmax is shown in dotted lines in Figure I.3. We see that point M lies above this curve, and cannot therefore be accessed in steady state. In fact, use of the transistor in the linear zone leads to significant overdimensioning in relation to the power required by the load. This is generally the case for low-power requirements (e.g. class A audio amplifiers) but is not possible for high powers when a high yield is required, notably for equipment with integrated energy, where priority is given to autonomy and/or compactness (using smaller, lighter thermal dissipation elements).

Figure I.3 Operating point of the circuit

However, the use of the “turned off” and “saturated” transistor modes alone seems to be limiting in terms of the dosage of the power supplied to the load, in which we must either provide no power, in cases where the transistor is operating as an open switch (point B), or maximum power, practically equal to E2/R, if the transistor is saturated (closed switch – point S).

I.2.3 Load inertia and average model


The disadvantage presented by the ON/OFF operating mode for transistors, as discussed above, does not pose significant problems in practice for most applications, due to the inertia of the powered load. The transistor is assimilated to a switch, but, unlike in electromechanical models, this switch may operate using very short open/closed cycles (duration denoted as Td, the switching period) without incurring damage. It is thus possible to make cycles sufficiently short for the powered load to be perfectly insensitive to commutation; it therefore behaves in a manner that is equivalent to a linear power supply with a voltage equal to the average voltage supplied by the switching circuit. The period Td must be short in relation to the time constant of the load:

 thermal time constant for a heating element (generally high – from a number of seconds to a number of minutes in the case of ovens);

 thermal time constant, again, for the filament of an incandescent light bulb (tens or hundredths of a millisecond);

 biological time constant of persistence of vision for a rapid light source2 such as white LEDs3(Td < 40 ms).

An LED powered with a nominal voltage/current 50% of the time will produce a light flow equal to 50% of the nominal flow.

This very general principle also applies to electrical machines, and progress in the design of electronic components means that we can now attain frequencies of the order of around 10 kHz for industrial variable-speed drives with power levels greater than or equal to 1 kW. Evidently, switches commutating low-power levels can reach higher switching frequencies than high-power switches: these components themselves are subject to the same inertia problems as the loads they power. Note, for example, that switching frequencies are often lower than 1 kHz for motors with power levels measured in megawatts, such as those used in railway engines.

I.3 Families of converters


1.3.1 Classification of structures


The most obvious...

Erscheint lt. Verlag 9.4.2015
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-100459-1 / 0081004591
ISBN-13 978-0-08-100459-3 / 9780081004593
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 6,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99