EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction - Bita Mokhlesabadifarahani, Vinit Kumar Gunjan

EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction (eBook)

eBook Download: PDF
2015 | 2015
XV, 35 Seiten
Springer Singapore (Verlag)
978-981-287-320-0 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.

Ms. Bita is an Occupational Therapist with dignified academic background over eight years experience in treatment of multiple sclerosis, Neuro-rehabilitation, Orthopedic Rehabilitation and researcher role in the Neuro-rehabilitation research, Ergo Design and treatment field of an esteemed Rehabilitation centre. Presently she works in synergy with medical practitioner of high repute while operating from private practice to contribute to society and medical fraternity.
Mr. Vinit Kumar Gunjan is an Assistant Professor at AITS, Rajampet India. He also serves as the Secretary of IEEE Computer Society of Hyderabad Chapter. He worked with Tata Consultancy Services and SET Noida before joining AITS. Vinit is member of several IEEE Societies, ACM, ACCS, IE and others. He has several National and International Publications to his credit.
Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.

Ms. Bita is an Occupational Therapist with dignified academic background over eight years experience in treatment of multiple sclerosis, Neuro-rehabilitation, Orthopedic Rehabilitation and researcher role in the Neuro-rehabilitation research, Ergo Design and treatment field of an esteemed Rehabilitation centre. Presently she works in synergy with medical practitioner of high repute while operating from private practice to contribute to society and medical fraternity. Mr. Vinit Kumar Gunjan is an Assistant Professor at AITS, Rajampet India. He also serves as the Secretary of IEEE Computer Society of Hyderabad Chapter. He worked with Tata Consultancy Services and SET Noida before joining AITS. Vinit is member of several IEEE Societies, ACM, ACCS, IE and others. He has several National and International Publications to his credit.

Introduction to EMG Technique and Feature Extraction.- Methodology for  working with EMG dataset.- Results.- Conclusions and Inferences of Present Study.

Erscheint lt. Verlag 10.2.2015
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Forensic and Medical Bioinformatics
SpringerBriefs in Forensic and Medical Bioinformatics
Zusatzinfo XV, 35 p. 17 illus., 13 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Medizin / Pharmazie Medizinische Fachgebiete Orthopädie
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik
Schlagworte electromyography (EMG) • feature extraction • Fuzzy Network • Musculoskeletal disorders • Neuro-fuzzy Classifiers • Neuro-muscular Disorders • Neuro-Rehabilitation • Orthopedic Rehabilitation
ISBN-10 981-287-320-1 / 9812873201
ISBN-13 978-981-287-320-0 / 9789812873200
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich