Neutron Applications in Materials for Energy (eBook)

eBook Download: PDF
2015 | 2015
X, 306 Seiten
Springer International Publishing (Verlag)
978-3-319-06656-1 (ISBN)

Lese- und Medienproben

Neutron Applications in Materials for Energy -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Neutron Applications in Materials for Energy collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being outlined in the introductory chapter.

Whilst neutron scattering is extensively used to understand properties of condensed matter, neutron techniques are exceptionally-well suited to studying how the transport and binding of energy and charge-carrying molecules and ions are related to their dynamics and the material's crystal structure. These studies extend to in situ and in operando in some cases. The species of interest in leading energy-technologies include H2, H+, and Li+ which have particularly favourable neutron-scattering properties that render these techniques of analysis ideal for such studies and consequently, neutron-based analysis is common-place for hydrogen storage, fuel-cell, catalysis, and battery materials. Similar research into the functionality of solar cell, nuclear, and CO2 capture/storage materials rely on other unique aspects of neutron scattering and again show how structure and dynamics provide an understanding of the material stability and the binding and mobility of species of interest within these materials.

 Scientists and students looking for methods to help them understand the atomic-level mechanisms and behaviour underpinning the performance characteristics of energy materials will find Neutron Applications in Materials for Energy a valuable resource, whilst the wider audience of sustainable energy scientists, and newcomers to neutron scattering should find this a useful reference.



Prof Don Kearley received his PhD from the University of East Anglia, UK, worked at the Institut Laue-Langevin in Grenoble, France, became Chair of Radiation Physics at Delft University of Technology, the Netherlands, and is presently Senior Researcher in the Neutron Scattering Group at the Bragg Institute of ANSTO (Australian Nuclear Science and Technology Organization). He has a fair experience of most neutron-scattering techniques, particularly inelastic and quasielastic methods. Currently most of his work is in providing modelling support for the neutron scattering activities of scientists at the Bragg institute and elsewhere, which is usually in the form of understanding the underlying mechanism in function. Dr Vanessa Peterson is a Senior Research and Instrument Scientist at ANSTO (Australian Nuclear Science and Technology Organization). Her expertise includes structure and dynamics in chemistry and their relationship to properties in condensed matter materials including cement, porous coordination framework materials, and hydrogen storage materials. She has also great expertise in analyses techniques like Synchrotron/Laboratory X-Ray and Neutron Powder Diffraction, Rietveld analysis, Quasi-Elastic Neutron Scattering, Inelastic Neutron Scattering, and Single Crystal X-Ray Diffraction.

Prof Don Kearley received his PhD from the University of East Anglia, UK, worked at the Institut Laue-Langevin in Grenoble, France, became Chair of Radiation Physics at Delft University of Technology, the Netherlands, and is presently Senior Researcher in the Neutron Scattering Group at the Bragg Institute of ANSTO (Australian Nuclear Science and Technology Organization). He has a fair experience of most neutron-scattering techniques, particularly inelastic and quasielastic methods. Currently most of his work is in providing modelling support for the neutron scattering activities of scientists at the Bragg institute and elsewhere, which is usually in the form of understanding the underlying mechanism in function. Dr Vanessa Peterson is a Senior Research and Instrument Scientist at ANSTO (Australian Nuclear Science and Technology Organization). Her expertise includes structure and dynamics in chemistry and their relationship to properties in condensed matter materials including cement, porous coordination framework materials, and hydrogen storage materials. She has also great expertise in analyses techniques like Synchrotron/Laboratory X-Ray and Neutron Powder Diffraction, Rietveld analysis, Quasi-Elastic Neutron Scattering, Inelastic Neutron Scattering, and Single Crystal X-Ray Diffraction.

Preface 6
Contents 8
Contributors 10
1 Neutron Applications in Materials for Energy: An Overview 12
Abstract 12
1.1 Introduction 12
1.1.1 The Need for Neutrons 13
1.2 Neutron-Based Analysis of Energy Materials 14
1.2.1 Structure 15
1.2.1.1 Neutron Powder Diffraction 15
1.2.1.2 Pair-Distribution Function Analysis 16
1.2.1.3 Neutron Reflection 16
1.2.1.4 Small-Angle Neutron Scattering 17
1.2.2 Dynamics 17
1.2.2.1 Inelastic Neutron-Scattering 18
1.2.2.2 Quasielastic Neutron-Scattering 19
1.3 In Situ 19
1.4 Perspectives 19
References 20
Part I Energy Generation 21
2 Catalysis 26
Abstract 26
2.1 Catalysis and Neutron Scattering 26
2.2 Neutron Spectroscopy of Hydrogen-Containing Materials 27
2.2.1 Sorption of H2 During the Reduction of Copper Chromite 28
2.2.2 Dissociation of H2 on Ceria-Supported Gold Nanoparticles 29
2.2.3 Hydride Species in Cerium Nickel Mixed Oxides 29
2.3 Dihydrogen 30
2.3.1 Hydrogen Diffusion in Nanoporous Materials 31
2.3.1.1 Simultaneous Measurement of Self- and Transport Diffusivities 33
2.3.1.2 Diffusion of Hydrogen in One-Dimensional Metal-Organic Frameworks 34
2.3.1.3 Diffusion of Hydrogen in ZIFs 37
2.3.2 Quantum Effects on the Diffusion of Hydrogen Isotopes 37
2.4 Conclusions 39
References 40
3 Carbon Dioxide Separation, Capture, and Storage in Porous Materials 41
Abstract 41
3.1 The Importance of Carbon Dioxide Capture 41
3.1.1 Porous Materials for CO2 Separation and Storage 45
3.2 Neutron Scattering in Studying Porous Materials for CO2 Separation and Storage 46
3.2.1 Location of CO2 47
3.2.2 Dynamics of the CO2-Host System 50
3.2.3 Diffusion and Transport of CO2 52
3.2.4 Evolution of Microstructure of the Host and Adsorption Capacity 54
3.3 Probing Separations for Post and Pre Combustion Capture, as Well as Oxyfuel Combustion 56
3.3.1 Diffusion and Transport of CO2 and N2 56
3.3.2 Probing H2 Separation from CO2 57
3.3.3 Probing N2 Separation from O2 58
3.3.4 Probing CO2/CH4 Separation for Natural-Gas Sweetening 59
3.4 Experimental Challenges and the Importance of In Situ Experimentation 64
3.5 Perspectives for Neutron Scattering in the Study of Porous Materials for CO2 Separation, Capture, and Storage 65
References 66
4 Materials for the Nuclear Energy Sector 69
Abstract 69
4.1 Introduction 69
4.2 Steels 70
4.2.1 Residual Stress 71
4.2.1.1 Welding and Joining 72
4.2.1.2 Measurement Validation 74
4.2.2 Nano-Particle Strengthening 76
4.3 Zirconium and Its Alloys 78
4.3.1 Deformation 79
4.3.2 Residual Stress 79
4.3.3 Texture 82
4.3.4 Zirconium Hydride 82
4.4 Uranium 84
4.4.1 Structure 85
4.4.2 Kinetics of Phase Transformations 86
4.4.3 Radiography and Tomography 86
4.5 Coolant 87
4.6 Measurement of Radioactive Samples 87
4.7 Outlook and Perspectives 88
References 88
5 Chalcopyrite Thin-Film Solar-Cell Devices 91
Abstract 91
5.1 Introduction 91
5.2 Material Properties of Chalcopyrite-Type Compound Semiconductors 95
5.3 Structural Analysis of Off-Stoichiometric Chalcopyrites 97
5.3.1 Rietveld Refinement 98
5.3.2 Point-Defect Analysis by the Method of Average Neutron-Scattering Length 99
5.4 Low-Temperature Thermal Expansion in Chalcopyrite-Type Compound Semiconductors 101
5.5 Novel Materials for In-Reduced Thin Film Solar-Cell Absorbers 105
5.5.1 Cation Distribution in 2(ZnX)-CuBIIICVI2 Mixed Crystals 106
5.5.2 Point Defects in Cu2ZnSn(S,Se)4 Kesterite-Type Semiconductors 110
References 114
6 Organic Solar Cells 116
Abstract 116
6.1 Introduction 116
6.2 Performance, Efficiency, and Limitations of OPVs 117
6.3 Discotic Liquid Crystals 121
6.3.1 Case Study: Structure and Dynamics of a Discotic Liquid Crystal HAT6 and Its Charge-Transfer Complex with TNF Acceptor 123
6.3.1.1 Dependence of the Charge Transfer on the Structural Fluctuations and Conformations in HAT6 124
6.3.1.2 Towards a More Realistic Morphological Study of HAT6 127
6.3.1.3 A View of the Vibrational Dynamics of HAT6 131
6.3.1.4 Morphology of the Discotic Charge-Transfer System HAT6-TNF 134
6.3.1.5 Electronic and Vibronic Properties of the Discotic Charge-Transfer System HAT6-TNF 139
6.4 Conclusions 140
References 141
Part II Energy Storage 143
7 Lithium-Ion Batteries 145
Abstract 145
7.1 Li-Ion Batteries for Energy Storage 145
7.1.1 Demands and Challenges 147
7.1.2 Development Using Neutron Scattering 150
7.2 Electrodes 151
7.2.1 Crystal Structure 153
7.2.2 Local Structure 162
7.3 Lithium Diffusion 167
7.4 Electrolytes 171
7.4.1 Structure 172
7.4.2 Lithium Diffusion 174
7.5 Interfaces 179
7.6 Battery Function 184
7.6.1 In Situ Neutron Powder Diffraction 185
7.6.2 Commercial Batteries 185
7.6.3 Custom-Made Batteries 187
7.6.4 Kinetics of Lithium Distribution 190
7.6.5 Neutron Depth Profiling 192
7.6.6 Neutron Imaging 196
7.7 Perspectives 203
References 203
8 Hydrogen Storage Materials 210
Abstract 210
8.1 Hydrogen Storage for Mobile Applications 210
8.2 Complex Hydrides as Solid-State Hydrogen Storage Materials 213
8.2.1 Alanates: NaAlH4 214
8.2.2 Borohydrides 216
8.2.3 Amides 220
8.3 Adsorbents 223
8.4 Concluding Remarks 239
References 240
Part III Energy Use 245
9 Neutron Scattering of Proton-Conducting Ceramics 247
Abstract 247
9.1 High-Temperature Fuel Cells and the Strive Towards Intermediate Temperatures 247
9.2 Proton-Conducting Perovskites 250
9.2.1 The Perovskite Structure 250
9.2.2 The Incorporation of Protons 251
9.2.3 Proton Mobility 252
9.2.4 State-of-the-Art of Proton-Conducting Perovskites 252
9.3 Neutron Scattering of Proton-Conducting Perovskites 253
9.3.1 Neutron Diffraction 254
9.3.1.1 Determination of Proton Sites 254
9.3.1.2 Local Structural Studies with Neutron Total Scattering 256
9.3.2 Inelastic Neutron Scattering Studies of Vibrational Proton-Dynamics 258
9.3.3 Quasielastic Neutron Scattering 261
9.3.3.1 Studies of Local-Diffusional Proton-Dynamics 261
9.3.3.2 Studies of Long-Range Diffusional Proton Dynamics 261
9.3.4 Neutron Prompt-Gamma Activation Analysis 264
9.4 Case Studies of Other Classes of Proton-Conducting Ceramics 265
9.4.1 ND Study of Hydrated Alkali Thio-Hydroxogermanates 266
9.4.2 QENS Study of Nanoionic Proton-Mobility in Solid Acids 269
9.4.3 ND Studies of Structure and Proton Sites in Lanthanum Gallates 270
9.5 Prospectives of Future Proton-Conducting Ceramics Research 271
9.6 Concluding Remarks 273
Acknowledgments 273
References 273
10 Neutron Techniques as a Probe of Structure, Dynamics, and Transport in Polyelectrolyte Membranes 276
Abstract 276
10.1 Introduction 276
10.2 Polyelectrolyte Membrane Materials 277
10.3 PEM Structure and Neutron Scattering 278
10.3.1 Nanoscale Membrane Structure 278
10.3.2 Nanoscale Structure at Interfaces 284
10.4 Transport and Dynamics 289
10.4.1 Water Transport and Dynamics 290
10.4.2 Water Transport 295
10.4.3 Ion and Polymer Dynamics 299
10.5 Conclusions and Outlook 302
References 302
Glossary of Abbreviations 305

Erscheint lt. Verlag 23.1.2015
Reihe/Serie Neutron Scattering Applications and Techniques
Zusatzinfo X, 306 p. 166 illus., 81 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Cathode Materials and Solid Electrolytes • Cationic conductivity • Fuel Cell Catalyst • Hydrogen conductivity • Hydrogen-related Properties of Matter • Inelastic Incoherent Neutron Scattering • Inorganic Solar-cells • In-situ neutron scattering analysis • intermetallic compounds • Ionic Mobility in Solids • Lattice dynamics and crystallography studies • Neutron-based studies on sustainable-energy materials
ISBN-10 3-319-06656-0 / 3319066560
ISBN-13 978-3-319-06656-1 / 9783319066561
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99