Epitaxial Growth of Complex Metal Oxides
Woodhead Publishing Ltd (Verlag)
978-1-78242-245-7 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three.
Gertjan Koster is a Professor at the University of Twente in the Netherlands. He is also a visiting professor at the Joseph Stephan Institute in Slovenia. His current research focuses on the growth and study of artificial materials, the physics of reduced scale (nanoscale) materials, metal–insulator transitions, and in situ spectroscopic characterization. Mark Huijben is a Professor at the University of Twente in the Netherlands. He is also a Guest Scientist of the IEK-1 Electrochemical Storage Department at Forschungszentrum Jülich in Germany. His research currently focuses on nanostructured thin films for advanced energy conversion and storage. Guus Rijnders is a Professor and Chairman of Inorganic Materials Science, University of Twente, Enschede, Netherlands. His research currently focuses on the integration of functional and smart materials with electronic and microelectromechanical systems (MEMS).
Part 1 Epitaxial growth techniques Molecular beam epitaxy for the growth of complex oxide materials Physical vapour deposition for the growth of complex oxide materials Chemical vapour deposition for the growth of complex oxide materials Pulsed laser deposition for the growth of complex metal oxides Sputtering of complex metal oxides Synthesis and surface engineering of complex metal oxides by atomic layer deposition Hybrid molecular beam epitaxy for the growth of complex metal oxide materials High pressure synthesis of transition metal oxides Part 2 Epitaxial growth and functional properties of complex metal oxides Epitaxial growth of ferroelectrics and multiferroics Growth study of epitaxial oxide thin films using Reflection high-energy electron diffraction (RHEED); Epitaxial growth of piezoelectrics Epitaxial growth of superconducting oxides Epitaxial growth of magnetic oxide thin films Strain engineering during epitaxial growth of complex metal oxides Defects, impurities and transport phenomenon in complex oxide crystals In situ x-ray scattering of epitaxial oxide thin films Scanning probe microscopy (SPM) of epitaxial oxide thin films Part 3 Applications of complex metal oxides Optoelectronics: an application of complex metal oxides Spintronics: an application of complex metal oxides Thermoelectric complex metal oxides Solid oxide fuel cells based complex metal oxides Applications of complex metal oxides in catalysis PiezoMEMS based on complex metal oxides
Reihe/Serie | Woodhead Publishing Series in Electronic and Optical Materials |
---|---|
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 870 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 1-78242-245-5 / 1782422455 |
ISBN-13 | 978-1-78242-245-7 / 9781782422457 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich